Prof. Stefano Pierini’s home page

Prof. Stefano Pierini (Full Professor, GEO/12 – 04/A4)

Dipartimento di Scienze e Tecnologie

Centro Direzionale, Isola C4 - I-80143 Napoli (Italy)

(phone: +39-0815476503; e-mail: stefano.pierini at uniparthenope.it)

Università di Napoli Parthenope

Scuola Interdipartimentale delle Scienze, dell’Ingegneria e della Salute

 

           

Curriculum Vitae

Research, Projects (Ricerca, Progetti)

Publications (Pubblicazioni)

Teaching (Didattica)

 

 

Research (Ricerca):

The first Intrinsic Mean State ever detected in the context of Physical Oceanography is the Mediterranean skeleton

 

® There is a Call for Papers for the Focus Issue in Chaos (American Institute of Physics Publishing) on “Nonautonomous Dynamics in the Climate Sciences

 

An International Seminar and Workshop entitled “Nonautonomous Dynamics in Complex Systems: Theory and Applications to Critical Transitions” was held in Dresden at the mpipks (Max Planck Institute for the Physics of Complex Systems) on 9-27 October 2023 (group photo). SP was among the invited speakers (his presentation can be downloaded here)

 

A Minisymposium entitled “Nonautonomous Dynamical Systems in the Climate Sciences” was organized by Ghil, Pierini and Tél for the XLIII Dynamics Days Europe Conference held in Naples on 3-8 September 2023

 

SP coordinated the Horizon 2020 “GAPWEBS” HYDRALAB+ Project

 

SP spent 2 months at the Institut Henri Poincaré (Paris) participating to the thematic trimester on “The Mathematics of Climate and the Environment”

 

Recent seminars at the Inst. of Theoretical Physics (Budapest) and at the Inst. Henry Poincaré (Paris)

 

Prof. Henk A. Dijkstra’s seminar at the DiST (September 29, 2022)

 

Dr. Thierry Penduff’s seminar at the DiST (October 12, 2021)

 

Prof. Michael Ghil’s seminar at the DiST (September 29, 2021)

 

La Parthenope contribuisce a verificare, in maniera elegante e innovativa, l’ipotesi di Milankovitch  (in Italian)

 

Climatologia alla Parthenope: uno studio dei tipping points climatici in sistemi eccitabili  (in Italian)

 

Il DiST a Budapest  (in Italian)

 

Modelling the marine circulation in the Campania Coastal System: CROM, CCMMMA, POM, publications: 1, 2, 3, 4, 5, 6, 7, 8

 

10 Publications as senior author in major international journals in the last 10 years: 2014-2023; 2011-2020

 

Recent involvement in the organization of sessions of international conferences

 

Teaching (Didattica):

Courses held by SP

 

Corso di Laurea in “Scienze Nautiche, Aeronautiche e Meteo-Oceanografiche”;   PDF  (in Italian)

 

Presentazione del Corso di Laurea Magistrale in “Scienze e Tecnologie della Navigazione”  (in Italian)

 

Master di II Livello in Meteorologia e Oceanografia Fisica  (in Italian)

 

Lectures given at the DiST by Prof. Michael Ghil (October 2016)

 

Research Interests (Interessi di Ricerca):

 

- My most recent research interest concerns the dynamical systems characterization of the link between orbital

forcing and glacial terminations implied by the Milankovitch hypothesis. To this respect I have proposed a dynamical systems paradigm denoted deterministic excitation, which I have applied to the late Pleistocene ice age.

 

- One of my main current research interests is the analysis of the pullback attractors of nonautonomous chaotic nonlinear dynamical systems, and the role the knowledge of such time-dependent attractors may play in improving our understanding of the system’s intrinsic variability. The nonlinear mathematical tools used in the numerical analyses include both low-dimensional systems of coupled ordinary differential equations and the partial differential equations describing the fluid motion of large-scale oceans in a rotating reference frame.

 

- In recent years I have conducted process-oriented modeling studies on nonlinear western boundary currents -and on the intrinsic low-frequency variability of their extensions- through both a hierarchy of mathematical models (ranging from low-order models to the primitive equations of geophysical fluid dynamics) and laboratory experiments with rotating platforms. I have paid particular attention to the Kuroshio Extension and the Gulf Stream. The analyses are based on geophysical fluid dynamics and nonlinear dynamical systems theory, are validated through altimetric data and are carried out in the general context of climate dynamics. Several studies, based on novel mathematical techniques, are devoted to analyzing the predictability of Kuroshio Extension transition processes.

 

- Other model studies are concerned with the Antarctic Circumpolar Current (and, more in general, the Southern Ocean) and the coastal circulation in the Southern Tyrrhenian Sea, with particular attention to the Campania Coastal System and the Gulf of Naples.

 

- Other less recent researches have been concerned with (i) linear aspects of the wind-driven ocean circulation, including Rossby wave propagation; (ii) regional and coastal oceanographic modelling; (iii) nonlinear and dispersive long wave modelling based on the Kadomtsev–Petviashvili (KP) equation; (iv) nonlinear stability analysis of geophysical flows.

 

Recent Publications (Pubblicazioni Recenti):

 

Here are my most relevant publications over the last few years (for a more complete list see the "Publications" link):

 

New Rubino A, S. Pierini, S. Rubinetti, M. Gnesotto and D. Zanchettin, 2023: The skeleton of the Mediterranean Sea.

Journal of Marine Science and Engineering, 11, 2098.

https://doi.org/10.3390/jmse11112098

 

New Bevilacqua V, A. Di Marino, A. Ciaramella, A. A. Biancardi, G. Budillon, P. de Ruggiero, E. Della Volpe, L. Gifuni, D. Mascolo, S. Pierini and E. Zambianchi, 2023: Computational Intelligence for Marine Litter Recovery.

In A. Esposito et al. (eds.), Applications of Artificial Intelligence and Neural Systems to Data Science, Smart Innovation, Systems and Technologies 360 (Springer).

https://doi.org/10.1007/978-981-99-3592-5_13

 

New Gifuni L., P. de Ruggiero, D. Cianelli, S. Pierini and E. Zambianchi, 2023: Numerical investigation of the three-dimensional paths of plastic polymers in the Gulf of Naples.

Marine Pollution Bulletin, 193, 115259.

https://doi.org/10.1016/j.marpolbul.2023.115259

 

New Pierini S., 2023: The deterministic excitation paradigm and the late Pleistocene glacial terminations.

Chaos, 33, 033108.

https://doi.org/10.1063/5.0127715,  Press Release,  Paper selected as Featured,  pdf of accepted manuscript, EGU-2023 display material. This article is part of the Focus Issue: Theory-informed and Data-driven Approaches to Advance Climate Sciences

 

New Wang Q. and S. Pierini, 2023: Causal forcing analysis on the low-frequency variations of eddy kinetic energy in the Kuroshio Extension region.

Journal of Climate, 36, 1-32.

https://doi.org/10.1175/JCLI-D-22-0702.1

 

Gifuni L., P. de Ruggiero, D. Cianelli, E. Zambianchi and S. Pierini S., 2022: Hydrology and dynamics in the Gulf of Naples during spring of 2016: In situ and model data.

Journal of Marine Science and Engineering, 10, 1776.

https://www.mdpi.com/2077-1312/10/11/1776.

 

Pierini S., P. de Ruggiero, M. E. Negretti, I. Schiller-Weiss, J. Weiffenbach, S. Viboud, T. Valran, H. A. Dijkstra and J. Sommeria, 2022: Laboratory experiments reveal intrinsic self-sustained oscillations in ocean relevant rotating fluid flows.

Scientific Reports, 12, 1375.

https://www.nature.com/articles/s41598-022-05094-1,   Supplementary Information

 

Pierini S. and M. Ghil, 2021: Tipping points induced by parameter drift in an excitable ocean model.

Scientific Reports, 11, 11126.

https://www.nature.com/articles/s41598-021-90138-1,   Supplementary Information, Top 100 in Earth Science, EGU-2021 display material

 

Saviano S., G. Esposito, R. Di Lemma, P. de Ruggiero, E. Zambianchi, S. Pierini, P. Falco, B. Buonocore, D. Cianelli and M. Uttieri, 2021: Wind direction data from a coastal HF radar system in the Gulf of Naples (Central Mediterranean Sea). 

Remote Sensing, 13, 1333 (in the Special Issue on the Sustained Ocean Surface Observation Using HF Radar).

https://doi.org/10.3390/rs13071333.

 

Fedele G., T. Penduff, S. Pierini, M. C. Alvarez-Castro, A. Bellucci and S. Masina, 2021: Interannual to decadal variability of the Kuroshio Extension: Analyzing an ensemble of global hindcasts from a dynamical system viewpoint. 

Climate Dynamics, 57, 975-992.

https://doi.org/10.1007/s00382-021-05751-7.

 

Fedele G., A. Bellucci, S. Masina and S. Pierini, 2021: Decadal variability of the Kuroshio Extension: The response of the jet to increased atmospheric resolution in a coupled ocean-atmosphere model. 

Climate Dynamics, 56, 1227–1249.

https://doi.org/10.1007/s00382-020-05528-4.

 

De Ruggiero P., G. Esposito, E. Napolitano, R. Iacono, S. Pierini and E. Zambianchi, 2020: Modelling the marine circulation of the Campania Coastal System (Tyrrhenian Sea) for the year 2016: Analysis of the dynamics. 

Journal of Marine Systems210, 103388.

https://doi.org/10.1016/j.jmarsys.2020.103388.

 

Castagno P., P. De Ruggiero, S. Pierini, E. Zambianchi, A. De Alteris, M. De Stefano and G. Budillon, 2020: Hydrographic and dynamical characterization of the Bagnoli-Coroglio Bay (Gulf of Naples, Tyrrhenian Sea). 

Chemistry and Ecology36, 598-618.

https://doi.org/10.1080/02757540.2020.1772244.

 

Wang Q. and S. Pierini, 2020: On the role of the Kuroshio Extension bimodality in modulating the surface eddy kinetic energy seasonal variability. 

Geophysical Research Letters, 47, e2019GL086308.

https://doi.org/10.1029/2019GL086308.

 

Wang Q., M. Mu and S. Pierini, 2020: The fastest growing initial error in prediction of the Kuroshio Extension state transition processes and its growth. 

Climate Dynamics, 54, 1953-1971.

https://doi.org/10.1007/s00382-019-05097-1.

 

Pierini S., 2020: Statistical significance of small ensembles of simulations and detection of the internal climate variability: An excitable ocean system case study. 

Journal of Statistical Physics, 179, 1475-1495 (in the Special Issue on the Statistical Mechanics of Climate).

https://doi.org/10.1007/s10955-019-02409-x. PDF

 

Wang Q., S. Pierini and Y. Tang, 2019: Parameter sensitivity analysis of the short-range prediction of Kuroshio Extension transition processes using an optimization approach. 

Theoretical and Applied Climatology, 138, 1481-1492.

https://doi.org/10.1007/s00704-019-02911-yPDF

 

Durante S., K. Schroeder, L. Mazzei, S. Pierini, M. Borghini and S. Sparnocchia, 2019: Permanent thermohaline staircases in the Tyrrhenian Sea. 

Geophysical Research Letters, 46, 1562-1570.

https://doi.org/10.1029/2018GL081747PDF

 

De Ruggiero P., E. Napolitano, R. Iacono, S. Pierini and G. Spezie, 2018: A baroclinic coastal trapped wave event in the Gulf of Naples (Tyrrhenian Sea). 

Ocean Dynamics, 68, 1683-1694.

https://doi.org/10.1007/s10236-018-1221-1PDF

 

Pierini S., M. D. Chekroun and M. Ghil, 2018: The onset of chaos in nonautonomous dissipative dynamical systems: A low-order ocean–model case study. 

Nonlinear Processes in Geophysics, 25, 671-692 (in the Special Issue on Numerical modeling, predictability and data assimilation in weather, ocean and climate)

https://www.nonlin-processes-geophys.net/25/671/2018/. PDF

 

Gentile V., S. Pierini, P. de Ruggiero and L. Pietranera, 2018: Ocean modelling and altimeter data reveal the possible occurrence of intrinsic low-frequency variability of the Kuroshio Extension. 

Ocean Modelling, 131, 24-39.

https://doi.org/10.1016/j.ocemod.2018.08.006PDF

 

De Ruggiero P., D. Zanchettin, M. Bensi, D. Hainbucher, B. Stenni, S. Pierini and A. Rubino, 2018: Water masses in the Eastern Mediterranean Sea: An analysis of measured isotopic oxygen. 

Pure and Applied Geophysics, 175, 4047-4064. 

https://doi.org/10.1007/s00024-018-1850-9PDF

 

Wang Q., Y. Tang, S. Pierini and M. Mu, 2017: Effects of singular vector-type initial errors on the short-range prediction of Kuroshio Extension transition processes. 

Journal of Climate, 30, 5961-5983.

https://doi.org/10.1175/JCLI-D-16-0305.1PDF

 

Zhang X., M. Mu, Q. Wang and S. Pierini, 2017: Optimal precursors triggering the Kuroshio Extension state transition obtained by the Conditional Nonlinear Optimal Perturbation approach. 

Advances in Atmospheric Sciences34, 685–699. 

https://doi.org/10.1007/s00376-017-6263-7PDF

 

De Ruggiero P., E. Napolitano, R. Iacono and S. Pierini, 2016: A high-resolution modelling study of the circulation along the Campania coastal system, with a special focus on the Gulf of Naples. 

Continental Shelf Research122, 85-101.

https://doi.org/10.1016/j.csr.2016.03.026PDF

 

Pierini S., M. Ghil and M. D. Chekroun, 2016: Exploring the pullback attractors of a low-order quasigeostrophic ocean model: the deterministic case.

Journal of Climate29, 4185-4202.

https://doi.org/10.1175/JCLI-D-15-0848.1PDF

 

Pierini S., 2015: A comparative analysis of Kuroshio Extension indices from a modeling perspective.

Journal of Climate28, 5873-5881. 

https://doi.org/10.1175/JCLI-D-15-0023.1PDF

 

Pierini S., 2014: Ensemble simulations and pullback attractors of a periodically forced double-gyre system. 

Journal of Physical Oceanography44, 3245-3254.

https://doi.org/10.1175/JPO-D-14-0117.1PDF

 

Pierini S., H. A. Dijkstra and M. Mu, 2014: Intrinsic low-frequency variability and predictability of the Kuroshio Current and of its extension. 

Advances in Oceanography and Limnology5, 79-122.

https://doi.org/10.1080/19475721.2014.962091PDF

 

Pierini S., 2014: Kuroshio Extension bimodality and the North Pacific Oscillation: a case of intrinsic variability paced by external forcing. 

Journal of Climate27, 448-454.

https://doi.org/10.1175/JCLI-D-13-00306.1PDF

 

Sgubin G., S. Pierini and H. A. Dijkstra, 2014: Intrinsic variability of the Antarctic Circumpolar Current System: low- and high-frequency fluctuations of the Argentine Basin flow. 

Ocean Science10, 201-2013.

https://doi.org/10.5194/os-10-201-2014PDF

 

Montuori A., P. de Ruggiero, M. Migliaccio, S. Pierini and G. Spezie, 2013: X-band COSMO-SkyMed wind field retrieval, with application to coastal circulation modeling.

Ocean Science9, 121-132.

https://doi.org/10.5194/os-9-121-2013PDF

 

Quattrocchi G., S. Pierini and H. A. Dijkstra, 2012: Intrinsic low-frequency variability of the Gulf Stream. 

Nonlinear Processes in Geophysics19, 155-164.

https://doi.org/10.5194/npg-19-155-2012PDF

 

Pierini S., 2012: Stochastic tipping points in climate dynamics.

Physical Review E85, 027101.

https://doi.org/10.1103/PhysRevE.85.027101PDF

 

Kramer W., H. A. Dijkstra, S. Pierini and P. J. Van Leeuwen, 2012: Measuring the impact of observations on the predictability of the Kuroshio Extension in a shallow-water model.

Journal of Physical Oceanography42, 3-17.

https://doi.org/10.1175/JPO-D-11-014.1PDF

 

Pierini S., P. Falco, G. Zambardino, T. A. McClimans and I. Ellingsen, 2011: A laboratory study of nonlinear western boundary currents, with application to the Gulf Stream separation due to inertial overshooting.

Journal of Physical Oceanography41, 2063-2079.

https://doi.org/10.1175/2011JPO4514.1PDFVideo clip

 

Pierini S., 2011: Low-frequency variability, coherence resonance and phase selection in a low-order model of the wind-driven ocean circulation. 

Journal of Physical Oceanography41, 1585-1604.

https://doi.org/10.1175/JPO-D-10-05018.1PDF

 

Pierini S., 2010: Coherence resonance in a double-gyre model of the Kuroshio Extension. 

Journal of Physical Oceanography40, 238-248.

https://doi.org/10.1175/2009JPO4229.1PDF

 

Pierini S. and H. A. Dijkstra, 2009: Low-frequency variability of the Kuroshio Extension. 

Nonlinear Processes in Geophysics16, 665-675 (in the Special Issue on Nonlinear processes in oceanic and atmospheric flows).

https://www.nonlin-processes-geophys.net/16/665/2009/PDF

 

Pierini S., H. A. Dijkstra and A. Riccio, 2009: A nonlinear theory of the Kuroshio Extension bimodality. 

Journal of Physical Oceanography39, 2212-2229.

https://doi.org/10.1175/2009JPO4181.1PDF

 

Pierini S., 2008: On the crucial role of basin geometry in double-gyre models of the Kuroshio Extension. 

Journal of Physical Oceanography38, 1327-1333.

https://doi.org/10.1175/2007JPO3924.1PDF

 

Pierini S., V. Malvestuto, G. Siena, T. A. McClimans and S. M. Løvås, 2008: A laboratory study of the zonal structure of western boundary currents. 

Journal of Physical Oceanography38, 1073-1090.

https://doi.org/10.1175/2007JPO3706.1PDF

 

Pierini S., 2007: Low-frequency variability of the Kuroshio Extension: model studies in the context of climate dynamics and dynamical systems theory.

In: "Science and Supercomputing in Europe", Report 2007 of the "High Performance Computing - Europa" Project.

ISBN: 978-88-86037-21-1, 516-521. PDF

 

Pierini S., 2006: A Kuroshio Extension System model study: decadal chaotic self-sustained oscillations.

Journal of Physical Oceanography36, 1605-1625.

https://doi.org/10.1175/JPO2931.1. PDF

 

Pierini S., 2006: Seasonal and interannual variability of the North Pacific Ocean: modeling results and their validation through altimeter data.

In Proceedings of the ESA-CNES Symposium: "15 Years of Progress in Radar Altimetry". European Space Agency.

ISBN/ISSN: 92-9092-925-1/1609-042X, Vol. SP-614. PDF

 

Pierini, S., 2005: A model study of the spectral structure of boundary-driven Rossby waves, and related altimetric implications.

Journal of Physical Oceanography35, 218-231. 

https://doi.org/10.1175/JPO-2680.1. PDF 

(high resolution figures)