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ABSTRACT

The Kuroshio Extension (KE) flow in the North Pacific Ocean displays a very distinctive decadal vari-

ability of bimodal character involving two completely different states (a large-meander ‘‘elongated’’ state

and a small-meander ‘‘contracted’’ state) connected by very asymmetric temporal transitions. Although such

a flow has been widely studied by means of a suite of mathematical models and by using several observational

platforms, a satisfactory theoretical framework answering quite elementary questions is still lacking, the main

question being whether such variability is induced by a time-varying wind forcing or, rather, by intrinsic

oceanic mechanisms. In this context, the chaotic relaxation oscillation produced by a process-oriented model

of the KE low-frequency variability, with steady climatological wind forcing, was recently recognized to be in

substantial agreement with altimeter data. Here those model results are further compared with a compre-

hensive altimeter dataset. The positive result of such a comparison allows the conclusion that a minimal

model for the KE bimodality has been identified and that, consequently, nonlinear intrinsic oceanic mech-

anisms are likely to be the main cause of the observed variability. By applying the methods of nonlinear

dynamical systems theory, relevant dynamical features of the modeled flow are then explained, such as the

origin of the relaxation oscillation as a consequence of a homoclinic bifurcation, the spatiotemporal character of

the bimodal behavior, and the degree of predictability of the flow in the different stages of the oscillation

(evaluated through a field of finite-time Lyapunov exponents and the corresponding Lagrangian time series).

1. Introduction

The bimodal behavior of the Kuroshio Extension

(KE) in the North Pacific Ocean has fascinated physical

oceanographers since indications of this phenomenon

were found (Taft 1972). Why should a western bound-

ary current extension switch between a large-meander

and a small-meander state (denoted also as ‘‘elongated’’

and ‘‘contracted’’ states, respectively; e.g., Qiu 2002) and

back in a few years time? Why does this bimodal be-

havior not appear in other western boundary currents,

such as the Gulf Stream? With the analysis of satellite

altimeter data (e.g., Qiu and Chen 2005) and those of in

situ measurements (e.g., as obtained within the Kuroshio

Extension System Study program: http://uskess.org/

index.html), a quite detailed description of the different

states of the KE and of their transition behavior is now

available.

There is still, however, no consensus on what pro-

cesses cause the observed bimodal low-frequency vari-

ability. A possible explanation relies on external causes,

such as variable atmospheric forcing, that would act

through an essentially linear time-dependent Sverdrup

balance and with the intervention of oceanic Rossby

wave propagation (e.g., Miller et al. 1998; Deser et al.

1999; Qiu 2002, 2003; Qiu and Chen 2005). In particular,

Qiu and Chen (2005) showed that the weak, spatially
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broad wind-driven Rossby wave variability computed in

the KE area appears to be in synchrony with the much

stronger and spatially sharper KE bimodal variability

observed in altimeter data, but they also showed (their

Fig. 9) that the latter can by no means be explained by

the former. The other possible explanation of the KE

bimodality is the occurrence of highly nonlinear pro-

cesses internal to the ocean system (e.g., Schmeits and

Dijkstra 2001; Pierini 2006).

A theory of the bimodality of the KE should include a

few essential ingredients. It should explain (i) why the

KE can basically be in two different (transient) states

and the origin of the spatial patterns of these states, (ii)

the decadal time scale of the transition between the two

states and the details of the transition itself, and (iii)

why there is so much irregularity in the KE path and

also in the temporal behavior during the transition from

the small- to the large-meander state, while spatial and

temporal variability are relatively low during the op-

posite transition.

An interesting issue concerns the identification of a

minimal model that captures the KE bimodality in

sufficient detail as to satisfactorily answer the questions

above, while still being simple enough so that precise

analyses of mechanisms can be made. On one end of the

spectrum of models are eddy-resolving general circula-

tion models (EGCMs), which seem to capture the bi-

modality in hindcast runs (e.g., Taguchi et al. 2005, 2007;

Qiu et al. 2008). However, analysis of these results has

not led to a satisfying theoretical framework, as indeed

many phenomena act in concert to provide the vari-

ability, but it is not easy to figure out which processes

are leading the melody and rhythm and which ones are

just playing an arrangement role. On the other end of

the spectrum are barotropic quasigeostrophic (QG)

models of the double-gyre wind-driven flow in rectan-

gular basins (e.g., Cessi and Ierley 1995; Dijkstra and

Katsman 1997; see also Dijkstra 2005). Although these

models display multiple states, oscillatory variability,

and nonlinear mechanisms of transition between dif-

ferent states, their results cannot obviously be directly

compared with any observational characteristics. So,

working our way upward in the hierarchy of models

(from the QG to the EGCMs), what will be a good

candidate for a minimal model?

In a recent process-oriented model study, Pierini

(2006) applied a reduced-gravity shallow-water model

to an idealized North Pacific Ocean with a fairly realistic

western coastline, and computed flows that are forced

by a fairly realistic time-independent climatological

double-gyre surface wind stress field. The results are

striking in that the low-frequency variability thus pro-

duced by purely intrinsic oceanic mechanisms yields a

relaxation oscillation between a large- and a small-

meander state that is in surprisingly good agreement

with that observed from satellite measurements (Qiu

and Chen 2005). Could this model serve as a minimal

model? Does it provide satisfactory answers to issues

(i)–(iii)? If so, this would imply that baroclinic instability,

bottom topography, complex time-dependent atmo-

spheric forcing, as well as effects of the meridional

overturning circulation somehow would not be essential

to answer the main issues above. Although much anal-

ysis of the patterns and time evolution of the flow were

already given in Pierini (2006), no definitive answers

were provided to the issues (i)–(iii).

The main aim of this paper is to develop a nonlinear

theory of the KE low-frequency variability that is based

on the recognition that the model by Pierini (2006) is

indeed an adequate minimal model for the problem

under study, which in turn implies that internal oceanic

mechanisms are responsible for the KE bimodal vari-

ability. First, in section 2, we confront the model results

and observations in more detail to provide support that

the model is indeed able to capture the most important

characteristics in observations at least related to the

issues (i)–(iii), and hence can serve as a minimal model.

To provide answers to those questions we use the same

approach followed in QG models in section 3 to inves-

tigate behavior of the model for different values of the

lateral eddy viscosity parameter. We show that by going

from high to low lateral friction, flow behavior and flow

transitions are found that are already understood in

the QG models. From a comparison with the results of

those simpler models, we are then (section 4) able to

provide answers to the issues (i)–(iii) in terms of physical

mechanisms using the language of nonlinear dynamical

systems theory. In the same section, the probability

density function, the state space velocity, and a field of

finite-time Lyapunov exponents, along with the corre-

sponding Lagrangian time series, have been computed

in an appropriate two-dimensional space in order to shed

light on the structure of phase space and on the degree of

predictability of the flow variability. Finally, in section 5 a

summary is given and conclusions are drawn.

2. Comparison between model results
and altimeter data

a. The mathematical model

The model used here is the same as that in Pierini

(2006, hereafter P06). This model is based on the

reduced-gravity shallow-water equations forced by an

analytic constant-in-time wind forcing derived from cli-

matological winds. The domain of integration is shown in
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Fig. 1, which also contains a plot of the wind stress curl.

The fundamental importance of the schematic coastline

introduced in the western part of the ocean on the

character of the low-frequency variability of the mod-

eled KE is discussed by Pierini (2008). For technical

details and parameter values used the reader should

refer to P06; our only control parameter here is the

lateral eddy viscosity, indicated by AH.

The reduced-gravity (equivalent barotropic) approx-

imation adopted in P06 is very appropriate for the KE

[e.g., Qiu et al. (2006), see in particular their Figs. 4–5],

and the chosen values of the depth of the surface layer

and the reduced gravity fit well with observed values.

Therefore, the sea surface height (SSH) field obtained

from altimetry can in principle be compared with the

same quantity obtained from a reduced-gravity model,

as they both represent a good approximation for the

upper-layer streamfunction.

b. Model–data comparison

The issue we will address in this section is whether this

model is able to provide the right transition time scale

along with the correct characteristics of the path vari-

ability. To do this we compare the model results with

altimeter data. A first encouraging answer in this re-

spect was given in P06 (his section 4b), where a com-

parison between model results for a reference bimodal

cycle and the merged Ocean Topography Experiment

(TOPEX)/Poseidon, Jason-1, and European Remote

Sensing Satellites 1 and 2 (ERS-1/2) altimeter data pre-

sented by Qiu and Chen (2005, hereafter QC05) was

discussed under the correspondence: t 5 145 yr of model

integration is equivalent to year 1993 of altimeter data.

Here we extend that analysis to a further cycle and in-

clude the aid of visual comparison with appropriate time

series and with altimetric maps, absent in P06.

We first compare the observed KE pathlength LKE

(Fig. 2a) and mean latitudinal position f of the up-

stream KE axis (Fig. 2b) (both defined in QC05) with

the corresponding model results (Figs. 2c,e and 2d,f,

respectively) for AH 5 220 m2 s21. Let us begin by de-

scribing the observations (Figs. 2a,b). During the first

two years the system is in a large-meander (elongated)

state (see the color panels in Fig. 3), corresponding to a

small LKE and a nearly average f, both being weakly

variable. An abrupt transition occurs during the fol-

lowing year (1995), when LKE suddenly increases, f

suddenly decreases, and both start showing a much

larger variability. This marks the beginning of a transi-

tion period of about 7 yr (roughly from 1995 to 2002)

called the unstable mode by QC05, and here denoted

the transition phase. During this phase LKE maintains

virtually the same behavior it had at its beginning, while

f stops decreasing after about two years (1997); it then

registers a positive trend that stops after about three

more years (2000), and it eventually decreases up to the

original value at around year 2002, which marks the end

of the transition phase. During the remaining three

years the situation is very similar to the initial one,

corresponding again to a large-meander state (see the

color panels in Fig. 3).

Let us now compare these observations with model

results. The first cycle (Fig. 2c for LKE and Fig. 2d for f)

is the same as discussed in P06, with the same temporal

synchronization with the altimetric signal. The succes-

sive cycle (Fig. 2e for LKE and Fig. 2f for f) presents some

quantitative difference but yields the same qualitative

FIG. 1. Domain of integration and contour map of the curl of the wind stress (units in 1028 N m23)

used to force the system (from P06).
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behavior. The model behavior agrees fairly well with

the observed one, both quantitatively and qualitatively.

Both Figs. 2a,c,e and 2b,d,f show two large-meander

phases connected by a transition phase with the correct

characteristics and timing. The time duration of the

transition phase is 6–8 yr (for the first and second cycle,

respectively) during which both LKE and f are highly

variable. The shape of the time series of f is remark-

ably similar to the observed one, especially for the first

cycle. There is also much weaker temporal variability

during the large-meander phase for both LKE and f,

as is the case for the observations. In fact, the mean

pathlength for both modeled cycles here agrees very

well with the observed one during the large-meander

phase (’1500 km).

There are also features that are not well captured by

the model. The observed temporal variability of LKE

during the northward KE migration is higher than the

modeled one (by a factor ;1.5), and on smaller (from

monthly to weekly) time scales (cf. Fig. 2a with

Figs. 2c,e; see also the KE paths shown in Fig. 3 of QC05

and in Fig. 4 of P06). This is not surprising since the real

high-frequency variability is due to the shedding and

merging of mesoscale eddies (as recognized by QC05),

so it cannot be realistically reproduced by the present

model, which apart from other causes, is only eddy

permitting (the grid spacing is Dx 5 20 km while the

internal Rossby deformation radius is Ri ’ 50 km) and

does not capture baroclinic instability. Nonetheless, it is

important to notice that not only the low-frequency

variability but also the high-frequency variability of the

model results are qualitatively similar to that observed.

As far as f is concerned, while the southernmost loca-

tion of the jet is f ’ 33.58N in both altimeter and model

data, the most northerly position is f ’ 368N in altim-

eter data, while it is u ’ 358N in the model data.

We now analyze the spatial patterns. In P06 a pre-

liminary model–data comparison of SSH maps was

carried out for the first cycle (t 5 145–157 yr), but

without providing graphical evidence of the altimetric

maps. Here we present the spatial patterns and extend

the analysis in P06 with the second cycle (t 5 157–169 yr).

In Fig. 3, the annual-averaged SSH fields of QC05 (color

images) are compared with the SSH fields obtained

from model results (grayscale images) according to the

same synchronization shown in Fig. 2 (note that the

spatial scales of data and model maps are the same). It

should be borne in mind that we are comparing the

observed ocean variability with the results of an ideal-

ized model forced by a constant wind stress, so the

several mismatches between data and model that are

evident from Fig. 3 are the obvious consequence of such

a daring comparison.

In 1993 the KE is in the large-meander, elongated

state. The corresponding model solution (t 5 157 yr)

agrees well for the first large anticyclonic meander in

position, shape, and strength. The second and third

meanders are merging in the observations, while they

are distinct in the model, but their positions and shapes

are again in fairly good agreement. On the other hand,

the cyclonic meander south of Japan is weaker in the

observations. After 11 yr a similar situation is achieved

(year 2004, t 5 168 yr), and the agreement is now even

better for the first and second anticyclonic meanders

and for the cyclonic meander south of Japan (which is

shifted slightly to the north in the model). For inter-

mediate times, the variability found in model results is

in surprising agreement with the observations. The

disruption of the small-meander state, accompanied by

the disappearance of the two main anticyclonic mean-

ders, occurs in less than 1 yr (from year 1994, t 5 158 yr,

to year 1995, t 5 159 yr). A further weakening of the KE

leads to a very convoluted jet reaching its minimum

energy at ; year 1997, t 5 161 yr (see the dashed lines in

Figs. 2e,f). From now on the jet is in its recharging

phase (see P06, section 4a). The correspondence be-

tween the panels in the range years 1998–2004 and

t 5 162–168 yr is amazing, again bearing in mind the

simplicity of the model.

One can argue whether the agreement between

model and observations is sufficient to claim that P06

can serve as a minimal model: this will always be sub-

jective. Regarding the issues (i) and (ii) mentioned in

the introduction dealing with the low-frequency vari-

ability of the flow, the model behavior appears to be in

significant agreement with observations. Also the ir-

regular variability in the transition between large- and

small-meander states (issue iii) is adequately simulated.

So with respect to describing the dynamics of the SSH

field, the results in this section provide support that all

essential processes are contained in the reduced-gravity

model (i.e., the latter can serve as a minimal model).

3. Analysis of the transition to the Kuroshio
Extension relaxation oscillation

From analyses with reduced gravity or barotropic

models in relatively small idealized basin geometries

(Jiang et al. 1995; Speich et al. 1995) and with more

realistic geometries (Dijkstra and Molemaker 1999;

Schmeits and Dijkstra 2001), we know that for large

values of AH there exists a unique steady state. When

AH is decreased, an imperfect pitchfork bifurcation

occurs and a regime of multiple steady states exists. In

the Pacific geometry used in Schmeits and Dijkstra (2001),

the two stable steady states consist of a small-meander
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state and a large-meander state. With decreasing AH

both steady states become unstable to transient distur-

bances through Hopf bifurcations, and periodic flow

appears.

In this section, we study systematically the transition

from these periodic equilibrium flows (still at relatively

large values of AH) in the present reduced-gravity

model to the value of AH 5 220 m2 s21, for which the

comparison with observations was made in section 2. To

do so, following P06, we use an empirical continuation

method (e.g., Jiang et al. 1995; Chang et al. 2001), which

requires a large number of time-dependent forward

integrations for different values of a relevant parameter

(here AH) and a successive monitoring of the changes in

qualitative behavior (to this purpose the model code was

parallelized and run on a high-performance computer

facility). The transition behavior in similar systems has

been systematically studied in the same way for quasi-

geostrophic models (Nadiga and Luce 2001; Simonnet

et al. 2005) and shallow-water models (Speich et al. 1995;

Simonnet et al. 2003) of rectangular basin flows.

a. Bifurcation diagram

In P06 a preliminary bifurcation analysis was pre-

sented (his section 4c) based on a limited number of

runs. The behavior was studied in the two-dimensional

state space defined by the kinetic energy integrated in

the sectors A and B (the Kuroshio Extension region and

the region south of Japan, respectively) shown in Fig. 1.

More precisely, the KE kinetic energy per unit mass EV

integrated in each sector V (V 5 A, B) is defined as

E
V

(t) 5
1

2

ð ð

V

h uj j2 dx dy, (1)

where h is the active upper-layer thickness and u is

the velocity vector. Below we substantially extend the

analysis of P06 by using many simulations at different

values of AH.

The time integrations have been performed within

the relatively restricted range AH 5 200–400 m2 s21.

Based on the solutions computed, the bifurcation dia-

gram shown in Fig. 4 has been derived. For each value of

AH the curves with labels min and max give the range

within which EA varies after spinup. For AH , 230 m2 s21

the two pairs of curves bmin–bmax and cmin–cmax are as-

sociated with the spontaneous switching of the orbit

between two equilibrium flows. The power spectrum of

each of the computed time series of EA is given as a

function of AH and the period in the composite map of

Fig. 5 (note the different scales in the three panels).

For values larger than AH 5 400 m2 s21 the flow is

steady. Over the whole range AH 5 255–400 m2 s21,

very weak periodic oscillations are present: we will refer

to this as regime I. There is one major transition in the

interval AH 5 240–255 m2 s21, where the amplitude of

the variability becomes much larger and a local transi-

tion to chaos occurs; we will refer to this as regime II.

We next have a range AH 5 235–240 m2 s21 in which the

most dramatic changes associated with a global bifur-

cation take place; we will refer to this as regime III.

Finally, the large low-frequency variability characteris-

tic for the model behavior as presented in section 2

occurs for viscosity values smaller or equal to AH 5

235 m2 s21; we will call this regime IV (it is in this regime

that the numerical solution shown in Figs. 2, 3 is ob-

tained, corresponding to AH 5 220 m2 s21). In the next

subsections, we discuss each regime in detail.

b. Regime I (AH 5 255–400 m2 s21): Weak
periodic oscillations

Just after the first Hopf bifurcation, near AH 5

350 m2 s21, the spectrum of EA exhibits two low-frequency

peaks: a stronger one at T 5 4 yr and a smaller one at

T 5 2 yr, while EB displays the same peaks (but with

smaller amplitude) plus a strong, very high-frequency

FIG. 4. Bifurcation diagram, with the control parameter given by

the lateral eddy viscosity AH. The curves with labels min and max

give the range within which EA varies after spinup. For AH ,

230 m2 s21 the two pairs of curves bmin–bmax and cmin–cmax are

associated with the spontaneous switching of the orbit between

two equilibrium flows.
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peak at T 5 5.5 days. For lower viscosity (e.g., AH 5

280 m2 s21), EA exhibits the same two spectral peaks but

with a higher amplitude and with a shift toward lower

frequencies: T 5 7 yr and T 5 3.5 yr. In addition, at

AH 5 280 m2 s21, a high-frequency peak at 8.5 days is

now present as well. For this value of AH, EB now has

two high-frequency peaks (the same peak present for

higher viscosity at 5.5 days plus the new one at 8.5 days)

and two low-frequency peaks at the same periods of

those of EA, but again with smaller amplitude.

In Fig. 6a, the spectral amplitudes of EA and EB (thick

and thin line, respectively) for AH 5 255 m2 s21 are

plotted. For both EA and EB, the high-frequency peaks

are basically unaltered with respect to those of AH 5

280 m2 s21, so the associated dynamics appears indepen-

dent of viscosity. In Fig. 6b the SSH anomaly corresponding

FIG. 6. (a) Spectral amplitudes of the kinetic energies EA (thick line) and EB (thin line) for AH 5 255 m2 s21. (b) SSH

field showing the pattern of the high-frequency variability (see text).

FIG. 5. Spectral amplitude F of the asymptotic KE kinetic energy, EA, as a function of AH and the period. Note the

different scales in the ranges AH 5 240–260 m2 s21 (F 3 10) and AH 5 260–280 m2 s21 (F 3 100).
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to the 8.5-day peak is shown for AH 5 255 m2 s21, which

is obtained by subtracting the field at some t0 from the

field at t0 1 Dt (in this case Dt 5 T/2). The pattern is very

localized in the western boundary current and south

of Japan, where likely the horizontal shear is largest.

Both the high-frequency of the variability as well as

the pattern lead us to conclude that this is a so-called

wall-trapped mode of variability that arises due to

the viscous instability of the western boundary layer

(Sheremet et al. 1997) and the anomaly tends to prop-

agate with the mean flow, in this case northward. The

reason why the high-frequency peak appears in EB at

any AH while it appears in EA only for a sufficiently

small value of AH (as noticed above) is now obvious: the

wall-trapped mode (Fig. 6b) has a very limited pene-

tration in region A (which explains the higher amplitude

in EB compared with EA), and for very high viscosity

such penetration vanishes.

c. Regime II (AH 5 240–255 m2 s21): Local
transitions

For AH values smaller than 255 m2 s21 the range of EA

experiences a very rapid increase, as shown in the dia-

gram of Fig. 4. The flow behavior in the initial part of this

interval (AH 5 250–255 m2 s21) is illustrated by the time

series of Fig. 7 (showing EA and EB in the left and right

panels, respectively, for 100 yr of integration) and in the

spectra of the two extreme values of this small AH in-

terval in Fig. 6a and Fig. 8a, respectively. Apart from a

broader energy distribution in the frequency domain,

the most relevant feature is an increase by an order of

FIG. 7. Kinetic energies per unit mass (left) EA and (right) EB in the range AH 5 255–250 m2 s21 (energy units in 1013 m5 s22). The white

lines in the right panels denote the 100-day running average.
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magnitude of the spectral amplitudes of the two main

low-frequency peaks, which undergo also a shift toward

smaller frequencies (from 3.8 and 8 yr for AH 5 255

m2 s21 to 6 and 8.2 yr for AH 5250 m2 s21; see also Fig. 5).

The mean flow for AH 5 250 m2 s21 is shown in Fig. 8b:

it is very similar to that of t 5 163 yr of Fig. 3, corre-

sponding to the minimum energy value of EA just at the

beginning of the recharging phase of the relaxation os-

cillation (see the dashed line of Fig. 2e or 2f). This same

feature is found for any value of AH in regimes II, III,

and IV, and should be considered a very distinct char-

acter of our low-frequency variability: no matter what

the nature of the oscillation is (whether an extremely

small oscillation, a periodic oscillation, or a vigorous

relaxation-type oscillation), the lowest energy state has

always approximately the same structure and energy

(for the latter compare lines bmin and line amin for AH ,

255 m2 s21). Figure 8c shows the SSH anomaly of the

low-frequency variability about the mean flow of Fig. 8b.

Unlike the high-frequency anomaly, a much broader

scale pattern is evident in this case. Because of the

large-scale pattern and its time scale, we interpret this

oscillation as being caused by a gyre mode (Simonnet

and Dijkstra 2002; Simonnet 2005).

The flow behavior in the interval AH 5 240–250

m2 s21 displays a further remarkable increase of the

energy range (Fig. 4) and a complete saturation of the

periods of the two main low-frequency peaks (Fig. 5),

which are finally located at 6.4 and 9 yr, respectively. It

is interesting to notice (Fig. 5) that the periods of these

two peaks remain relatively constant over a wide range

of viscosity values (AH 5 255 ; 280 m2 s21), while they

increase and then saturate within the same range (AH 5

240 ; 255 m2 s21) in which the variability of EA has a

remarkable increase (Fig. 4).

d. Regime III (AH 5 235–240 m2 s21): Global
transitions

In this small interval of AH values the system un-

dergoes an impressive change in its behavior, as shown

by the time series in Fig. 9. There is a transition from the

weak amplitude irregular oscillations at AH 5 240 m2 s21

(corresponding to gyre-mode variability around an un-

stable steady state very similar to that shown in Fig. 8b)

to a much larger-amplitude relaxation-type oscillation

at AH 5 235 m2 s21. The transition is extremely com-

plex, and the six cases reported in Fig. 9 are indicative in

this respect. Already for AH 5 240 m2 s21 a single re-

laxation oscillation appears just after t 5 20 yr, while the

subsequent oscillations are irregular but do not repre-

sent bimodal flows. For AH 5 239 m2 s21 the situation

is similar, but the local oscillations are quasi-periodic

until t ; 120 yr, and then become irregular thereafter.

For AH 5 238 m2 s21 and AH 5 237 m2 s21, relaxation

oscillations switch to local oscillations and vice versa in

an irregular manner. For AH 5 236 m2 s21 a perfectly

quasi-periodic local oscillation appears! The presence,

in a single run, of both relaxation oscillations and local

oscillations for AH 5 236–240 m2 s21 is represented in

the bifurcation diagram of Fig. 4 by two different ranges

(within the vertical dashed lines) delimited by amin–amax

FIG. 8. (a) Spectral amplitudes of the kinetic energies EA (thick line) and EB (thin line) for AH 5 250 m2 s21.

(b) Mean SSH field. (c) SSH field showing the pattern of the low-frequency variability (see text).
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and bmin–bmax, respectively. This has its counterpart in

the patterns of the spectral amplitude of Fig. 5.

Following P06, here we interpret the transition to the

large-amplitude relaxation oscillation as a global bifur-

cation, whose consequence is to allow the trajectory in

state space to leave the region close to the unstable

steady state through its unstable manifold, and to move

in a wide region of state space through what is usually

denoted as a homoclinic orbit, which eventually goes

back to the original region through the stable manifold

of the steady state. We will analyze this transition in

more detail in section 4.

e. Regime IV (AH 5 200–235 m2 s21): Homoclinic
and heteroclinic orbits

For flows in this last regime, time series of EA and EB

are plotted in Fig. 10. The relaxation oscillation pre-

sented in section 2 falls in this range and corresponds to

the case AH 5 220 m2 s21 (a more detailed time series of

EA for this case is also given by the dashed curves in

Figs. 2c and 2e for two successive cycles). Figure 10

shows that this relaxation oscillation is a very robust

feature, because it is present, with minor changes in

its structure, for any viscosity value within the interval

AH 5 235–215 m2 s21.

However, for some values of AH (e.g., for 230, 225,

and 215 m2 s21 in Fig. 10) the system is attracted by

small-amplitude intermediate energy oscillations of the

KE (see EA) accompanied by a strong anticyclonic re-

circulation gyre south of Japan (see EB). This happens,

for instance, during the interval 130 yr , t , 175 yr for

AH 5 230 m2 s21, after which the system is attracted

back to the relaxation oscillation. The spatial pattern of

the flow in this state resembles that at t 5 157 yr of Fig. 3,

FIG. 9. Kinetic energies per unit mass (left) EA and (right) EB in the range AH 5 240–235 m2 s21 (energy units in 1013 m5 s22).
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and, in fact, at that time both EA and EB for AH 5 220

m2 s21 show that the system has reached the region of

state space associated with the small-amplitude oscilla-

tion, although it escapes from it very soon. Following

P06 we interpret this behavior as a heteroclinic con-

nection between those two attracting regions of phase

space, which will be further analyzed in section 4.

The complexity of system behavior in this highly

nonlinear regime is well represented by the case AH 5

210 m2 s21. After two typical KE relaxation oscillations

and two further anomalously strong oscillations during

the first 50 yr, the system is attracted to the small-

amplitude oscillation state discussed in the previous

paragraph. For this low-viscosity value, however, the

system exhibits a perfectly repeating cycle (of 9.5 yr),

and it consequently stays there forever. The same hap-

pens for smaller viscosity values, for example, AH 5 200

m2 s21 (see Fig. 7 of P06), in which case the final state is

reached after t ; 150 yr. For even smaller viscosity the

model (with the adopted spatial resolution) is numeri-

cally unstable.

4. Analysis of the relaxation oscillation

An analysis of the KE bimodal behavior as a self-

sustained oscillation of intrinsic oceanic origin was

proposed by P06 (his section 4a) on the basis of geo-

physical fluid dynamical considerations. In this section,

following the same approach as used in section 3, an

analysis in the language of nonlinear dynamical systems

theory will be carried out. Although the time series

discussed in the previous section provide an impression

of the different flow regimes, they offer no direct insight

into the geometric properties of the trajectories in state

FIG. 10. Kinetic energies per unit mass (left) EA and (right) EB in the range AH 5 235–210 m2 s21 (energy units in 1013 m5 s22).
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space (e.g., whether homoclinic and heteroclinic orbits

actually occur and whether a particular flow is sensitive

to initial conditions). We now develop a more geometric

analysis by using projections of the trajectories in the

state space represented by the EB–EA plane, following

the same choice of P06. In such a plane the system evo-

lution is represented by the trajectories:

X
k

5 [E
B

(t
k
) , E

A
(t

k
)], k 5 1, . . . , N, (2)

where tk 5 k dt (the sampling time of the time series is

chosen as dt 5 1 day) and, for the sake of convenience,

the energies are scaled by a factor 1013.

We first focus on the global bifurcation occurring be-

tween AH 5 235 m2 s21 and AH 5 240 m2 s21 (regime III).

In Fig. 11a, the abrupt transition from a small-amplitude

oscillation to a large-amplitude relaxation oscillation is

evidenced again in the time series. In the EB–EA phase

plane (Fig. 11b), the view is even more dramatic; for

AH 5 240 m2 s21 (blue curve) the trajectory occupies

a relatively small area in state space while for AH 5

235 m2 s21 the trajectory suddenly explores a new high-

energy area in state space. This change in state space

behavior can be illustrated in more detail by considering

the probability density function (PDF), which is com-

puted as follows.

Let us subdivide a portion G of the plane (containing

all trajectory points after spinup) in n 3 m rectangular

cells sij (i 5 1, . . . , n; j 5 1, . . . , m), each of area ds. The

PDF Pij of localization of the trajectory in the cell sij is

defined as

P
ij

5

�
N

k5kmin

q
ij
(X

k
)

(N � k
min

) ds
, (3)

where tkmin 5 kmin dt is the time at which the trajectory

is first localized over the attractor, and where

q
ij
(X

k
) 5

1 if X
k
2 s

ij
,

0 if X
k
=2 s

ij
.

(

Naturally, the normalization condition

�
i,j

P
ij

ds 5 1

is satisfied.

FIG. 11. (a) Time series of the kinetic energy EA and (b) projection of flow trajectory onto the EB–EA plane, for AH 5 240 m2 s21 (blue

line) and AH 5 235 m2 s21 (red line). (c) PDF P on the EB–EA plane for (bottom) AH 5 240 m2 s21 and (top) AH 5 235 m2 s21 (energy

units in 1013 m5 s22).
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Figure 11c shows that the PDF (with n 5 m 5 100) is

confined in a restricted region around the unstable fixed

point X for AH 5 240 m2 s21, and then collapses for

AH 5 235 m2 s21, embracing regions well beyond the

original basin of attraction of X . Such a small change in

the viscosity has produced a small but extremely rele-

vant change in the structure of state space: X has now

become an unstable saddle point so that the trajectory

can now depart from it.

Figure 12a shows the PDF for the reference case

AH 5 220 m2 s21 (section 2b), again with n 5 m 5 100,

and Fig. 12b shows the corresponding contour plot

limited to very low values of P in order to evidence the

main paths followed by the trajectory. In Fig. 13 the

state space velocity field Uij obtained from (2) in each

cell sij according to the formula

U
ij

5

�
N�1

k5kmin

(X
k11
� X

k�1
)

2 dt
q

ij
(X

k
)

�
N�1

k5kmin

q
ij
(X

k
)

(4)

is plotted. The point where the PDF is at a maximum

corresponds to the one in which jUj attains its minimum

value, and can therefore be identified with the unstable

saddle point, X 5 (2.955 , 0.356) (indicated by a dot in

Figs. 12b and 13), whose corresponding spatial pattern is

very similar to that for t 5 161 yr of Fig. 3 (note that in

X the KE energy EA is minimum while the energy of

the Kuroshio south of Japan EB has an intermediate

value). A combined analysis of these figures shows that

the trajectory has a long residence time near X, it then

leaves that region following the main direction indi-

cated by the outgoing arrow in Fig. 12b and remains

FIG. 12. PDF P on the EB–EA plane, for AH 5 220 m2 s21: (a) surface diagram; (b) contour plot showing only the values P , 10

(energy units in 1013 m5 s22).

FIG. 13. Velocities on the EB–EA plane for AH 5 220 m2 s21.

The 2.0-isoline of the PDF P is superimposed (energy units in

1013 m5 s22).
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almost confined within the region denoted Pout, which is

a portion of the unstable manifold of X; the trajectory

eventually approaches X through the main direction

indicated by the ingoing arrow, remaining almost con-

fined within the region denoted Pin, which is a portion

of the stable manifold of X. It should be noted that Pout

and Pin appear disconnected, but this is only because

the homoclinic reconnection occurs in a wide region,

roughly represented by the sector Prec1 [ Prec2 in

Fig. 13, in which very high speeds jUj are accompanied

by very small values of the PDF. In the same figure the

sector Pm delimited by the 2.0-isoline of P appears to be

well representative of the region inside which the un-

stable and stable manifolds depart from the high resi-

dence time region surrounding X.

Very useful information concerning the sensitivity of

flow trajectories to initial conditions (and hence, con-

cerning the degree of predictability of the flow) is pro-

vided by the rate of divergence of initially nearby

points. We investigate this by computing a field of finite

time Lyapunov exponents (FTLE) generalizing a tech-

nique typically used with experimental time series (e.g.,

Hilborn 2000, chapter 9). From the trajectory Xk, Mij

time instants k(i, j, n) (n 5 1, . . . , Mij) are identified such

that the points Xk(i,j,v) belong to distinct tracts of the

trajectory and are contained in sij (two different k are

required to be separated by a time sufficiently large to

ensure that the corresponding points belong to different

relaxation oscillations). Then, the Mij 2 1 couples of

nearby points (both falling initially inside sij) Xk(i,j,1)

and Xk(i,j,11m) (m 5 1, . . . , Mij 2 1) are chosen to com-

pute the divergence of trajectories. Let us call d0 the

initial distance (defined by the Euclidean metric) be-

tween two points, and dt its evolution after time t 5 dt k9:

d
0
(i, j, m) 5 jX

k(i, j,1)
�X

k(i,j,11m)
j,

d
t
(i, j, m) 5 jX

k(i, j,1)1k9
�X

k(i, j,11m)1k9
j.

We define doubling time as the time t2(i, j,m) (assuming it

exists under the hypothesis of exponential divergence of

nearby trajectories) after which dt 5 2d0. Then we can

define an average doubling time relative to each cell:

ht
2
i

ij
5

1

M
ij
� 1

�
M

ij
�1

m51
t

2
(i, j, m). (5)

It is customary to represent this information by intro-

ducing the Lyapunov exponent l:

d
t
5 d

0
elt.

We can thus compute from (5) the finite-time (doubling

time) Lyapunov exponent for each cell:

l
2
(i, j) 5

1

ht
2
i

ij

ln2. (6)

Finally, in order to characterize the trajectory Xk in

terms of the degree of predictability of the state space

regions it encounters, we propose to use a ‘‘Lagrangian’’

Lyapunov exponent following Xk, defined as

L
X

(t
k
) 5 �

i, j
l

2
(i, j) q

ij
(X

k
), (7)

where, again, tk 5 k dt.

It should be borne in mind that l2 and LX are com-

puted on the EB–EA phase plane, so the predictability

implied by such Lyapunov exponents concerns only the

energy of the system, not its actual state. In principle,

cases might exist in which the evolution of the energy of

different spatial sectors of the system could be very

predictable and, at the same time, the flow evolution

could be very sensitive to the initial conditions (see the

discussion of Fig. 15 below), but the contrary would not

be allowed. In practice, since the bimodality of the KE is

described so well by EA and EB, l2 and LX are expected

to provide significant information about the possibility

of predicting the evolution of the KE state, at least in its

gross features.

It is also worth stressing that for the computation of

the PDF, the state space velocity, the field of FTLE, and

the Lagrangian FTLE defined by (3), (4), (6), and (7),

respectively, trajectories have to be computed, and this

is implied by the empirical continuation method adopted

here. In this respect, the latter method presents, there-

fore, an important advantage over the more sophisticated

analytical continuation methods, which, however, are not

suitable for this purpose.

Figure 14 shows l2 for AH 5 220 m2 s21, computed

from a 400-yr-long time series. In Pm, l2 is very small

everywhere: this implies a slow divergence of trajecto-

ries and, consequently, a relatively high degree of pre-

dictability (in the sense stated above). On the other

hand, it is in the reconnection regions Prec1 and Prec2

and in Pa that l2 assumes very large values, implying a

highly unpredictable state. Figure 15c shows LX for the

reference period t 5 145–169 yr (corresponding to the

two bimodal cycles discussed in section 2b), where EA,

EB (Fig. 15a), LKE, and f (Fig. 15b) are also shown for

the sake of comparison. Figure 15 allows us to investi-

gate the variation of l2 and to identify three main stages

(S1, S2, and S3) of the relaxation oscillations.
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In stage S1, during the intervals t ’ 147–151 yr and

t ’ 159.5–165 yr (for the first and second cycles, re-

spectively) LX is very small, so EA and EB yield the

highest predictability. Here we are in the first half of the

transition phase (see section 2b), that is, just after the dis-

ruption of the large-meander phase and, subsequently, in

the recharging phase of the relaxation oscillation (Fig. 15a,

thick line) when the KE patterns are more variable

(Fig. 3) and more convoluted (Fig. 15b, thick line) and

f is increasing (Fig. 15b, thin line). In other terms, the

energy evolution proves less chaotic when the variabil-

ity and convolution of flow patterns are maximum (this

occurs in region Pm of state space). Such property is

somewhat unexpected, but is only apparently paradox-

ical [see the discussion just after Eq. (7)] and appears to

be very distinctive of our KE theory. The concomitant

evolution of EA and EB in this stage of the RO differs

little from cycle to cycle, but this hides the existence of

highly variable mesoscale features (e.g., as shown by

LKE in Fig. 15b) that feed the KE jet and that, at the

same time, are presumably very unpredictable.

In stage S2, during the intervals t ’ 151–154 yr and

t ’ 165–168 yr (for the first and second cycles, respectively)

LX is highly variable, with peaks an order of magnitude

larger than in the previous phase, so EA and EB yield a

highly chaotic behavior and are, therefore, highly un-

predictable (l2 5 100 yr21 corresponds to a doubling

time of just t2 ’ 2.5 days). This occurs when the KE is

reaching its maximum energy, the large-meander state

is attained, f is at its maximum, and LKE has a weak

variability. Moreover, the Kuroshio south of Japan

FIG. 15. (a) Kinetic energies per unit mass EA (thick line) and EB (thin line) in 1013 m5 s22

units. (b) Upstream KE pathlength LKE(thick line) and mean latitudinal position of the KE f

(thin line). (c) Lagrangian doubling-time Lyapunov exponent LX. The time series refer to the

two bimodal cycles discussed in section 2.

FIG. 14. Doubling-time Lyapunov exponent l2 on the EB –EA

plane for AH 5 220 m2 s21. The 2.0 isoline of the PDF P is su-

perimposed (energy units in 1013 m5 s22).
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yields a strong variability (Fig. 15a, thin line) that, ac-

cording to P06 (see also Pierini 2008), is associated with

the ejection of cyclonic mesoscale eddies detaching

from a meridionally elongated cyclonic meander (a pro-

cess well known to occur south of Japan; e.g., Qiu and

Miao 2000). So, it is basically in connection with this

process (confined outside the KE region and occurring

mainly in Prec2 and in part of Prec1) that the large values

of LX emerge.

In stage S3, during the interval t ’ 154–159.5 yr (re-

ferring to the first cycle; the corresponding interval for

the second cycle is not included in the graph) LX is less

variable than in stage S2 but with several very large

peaks (corresponding to t2 ’ 1 day), implying a very

unpredictable system. This occurs mainly in sector Pa

(Figs. 13, 14) when the KE is in the large-meander–

elongated mode but is weakening, not being fed by the

flux of negative relative vorticity coming from the south,

which is dissipated within the region of the southern

cyclonic meander (see P06, his section 4a).

In conclusion, the concomitant evolution of EA and

EB is less chaotic when the KE jet is weak, more vari-

able, and more convoluted, and in its recharging phase

(stage S1). It is very chaotic when the KE jet is in its

large-meander phase (stage S2), and also when it

weakens, as long as it is in the large-meander state

(stage S3), in this last case presenting distinct episodes

of very large FTLE. These conclusions provide valuable

insight into the predictability of the low-frequency

variability of the KE system.

5. Summary and conclusions

In this paper we have proposed a theory for the KE

bimodal low-frequency variability that is equivalent

barotropic and intrinsically nonlinear. The theory is

based on the transition behavior of double-gyre flows in

QG models that is extended here for the Pierini (2006)

model, and shows remarkably good agreement with

observations. The control parameter in the transition

behavior of the latter model is the lateral eddy viscosity

parameter AH. On the other hand, the amplitude of

the wind stress forcing (another typical control param-

eter) was kept fixed. This choice is justified by the na-

ture of our approach, which is based on an idealized

process study but with essential elements of realism,

among them a relatively realistic climatological wind

stress field whose amplitude is therefore fixed. The

time integrations have been performed for many

values of AH within the relatively restricted range AH 5

200–400 m2 s21. The investigation carried out in this

paper on how the solution undergoes (even dramatic)

changes in such a range has contributed to improving

our understanding of the character of the KE relaxation

oscillation.

For large values of AH there is only a steady state [in

agreement with results in Schmeits and Dijkstra (2001)],

which is very similar to the small-meander KE state.

Once AH is decreased, a first Hopf bifurcation occurs,

leading to periodic behavior yielding high-frequency

(on the order of days) and low-frequency (on the order

of years) oscillations. Similar high-frequency oscilla-

tions have been found in QG models of the double-gyre

flow in idealized basins and they could be attributed to

either Rossby–basin modes or wall-trapped modes: here

we have identified the latter. The low-frequency (in-

terannual) variability has been attributed, like in sim-

pler models, to a gyre-mode (shear) instability. For

smaller AH, we have then provided evidence for the

occurrence of a global bifurcation and the establishment

of a quasi-homoclinic regime, in which the frequency of

the variability saturates. We interpret this as a Shilnikov

bifurcation (Simonnet et al. 2005), occurring in these

models because the periodic behavior associated with

gyre-mode variability becomes so large that it connects

to a second steady state.

This transition scenario does not only provide insight

into the origin of the complex behavior of the flow

trajectories, it also provides a picture of the physical

processes associated with time scales and patterns in the

flow. Definitely, (at least) two steady state patterns of

the KE play a crucial role in the bimodality of the jet;

the two states differ considerably in their spatial struc-

ture and energy, with the small-meander state having

kinetic energy that is about one-third of that of the

large-meander state. The transition time scale between

these patterns originates from a saturation of the gyre-

mode instability (as it does in QG models) and hence

from a saturation of the shear instability of the small-

meander state. The high degree of irregularity that the

flow has during the transition from the small- to the

large-meander state is due to the fact that the high-

energy state is only reached in a global bifurcation,

which is accompanied with chaotic behavior.

In the analysis we have made use of mathematical

tools whose application to the specific problem appears

to be novel. In an appropriate two-dimensional phase

space the probability density function, the phase space

velocity, and a field of finite-time Lyapunov exponents

and the corresponding Lagrangian time series have been

computed from the long time series that have benefited

from the empirical continuation method adopted here.

We believe such tools could be applied to studies of the

same nature in the future.

In view of these results we conclude that the KE

bimodality is likely to arise from highly nonlinear
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interactions that are controlled by an equivalent-barotropic

dynamics internal to the ocean system, and in which

time-dependent atmospheric forcing, baroclinic insta-

bility, and the effects of bathymetry are of second-order

importance.
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