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Abstract 

The correct mathematical approach to climate change requires the knowledge of the time-dependent 

system’s pullback/snapshot attractor (PBA). Once the governing equations and external forcing are 

known, the PBA can be estimated by performing an ensemble simulation (ES) of many forward time 

integrations differing only by their respective initialization; the resulting ensemble mean and spread 

are usually considered as representative of the forced and internal variability (FV and IV), 

respectively. In this paper the PBA of  an excitable conceptual ocean model subjected to an idealized 

decadal time-scale aperiodic forcing is determined and is then used to show that the system’s 

relaxation oscillations contribute substantially to the ensemble mean, despite their intrinsic nature: as 

a consequence, a clear separation between the FV and IV is impossible in this case study. This 

provides an example of dynamical behaviour which may be typical of climate ESs under fluctuating 

aperiodic forcing. The impact of the number of ensemble members 𝑁 on the statistical significance 

of the ES is then investigated. The complexity of realistic climate modelling currently imposes 

N=O(100): how significant is the statistical information derived from such small ESs? To answer this 

question for the present case study, the knowledge of the PBA is exploited to carry out a systematic 

comparison between the latter and small ESs with N=50, also by using novel quantifiers specifically 

conceived for this purpose. The results reveal a remarkable significance of such ESs beyond the 

predictability time and may provide useful information for the design of future realistic ESs. 

Keywords:  

Pullback attractors · Ensemble simulations · Climate change · Internal climate variability · Reduced 

order climate models · Excitable systems  
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1 Introduction 

It has recently been recognized that the correct description of a changing climate subjected to both 

natural and anthropogenic forcing requires the knowledge of the time-dependent probability 

distributions associated with the system’s pullback (or, alternatively, but equivalently, snapshot) 

attractor (PBA) [1-16]. The resulting description can be considerably different [13] from the classical 

one based on the 30-yr temporal average of a single long time series of climatological data [17], 

whether observed or simulated numerically: this is basically due to the nonergodicity of aperiodically 

forced systems [18]. 

The PBA is a mathematical tool which provides the extension to a nonautonomous system of the 

classical concept of attractor of a nonlinear dissipative autonomous dynamical system [e.g., 19-23]. 

If the external forcing and/or some parameter depend on time, the PBA is the subset 𝐴(𝑡) of phase 

space which, together with the probability measure supported on this set, is invariant under the 

governing equations and is such that any trajectory initialized in the remote past converges to it [e.g., 

1,10].  

In a numerical approach, the PBA and corresponding time-dependent probability measure can be 

estimated by performing an ensemble of many forward time integrations differing only by their 

respective initialization. The ensemble simulations (ESs) appropriate for the description of long-term 

climate changes and suitable for estimating the PBA require, therefore, climate model integrations 

longer than the predictability time, so that the memory of the initialization is lost thanks to the 

system’s chaoticity. In contrast, the more classical ESs preformed for weather forecasting are 

typically shorter or comparable than the predictability time, so that some memory of the initialization 

is retained. ESs for weather forecasting and climate change studies differ also in that, while for the 

former the ensemble spread is a measure of the uncertainty of the simulation, in the latter it is linked 

with the system’s internal (or intrinsic) variability (IV) and is, therefore, an irreducible property of 

the climate system. In this case, the ensemble members can be seen as independent parallel climate 
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realizations [15] subjected to the same governing equations, boundary conditions and forcing but 

each emerging from a different initial condition and characterized by a given probability of 

occurrence. 

The analysis of the PBAs of the climate system and of its subsystems is a recent field of research; 

thus, several theoretical and applicative aspects are still currently under debate and need to be 

clarified. In this context, the present paper focuses on two fairly general and interrelated issues, that 

will be investigated in the framework of the wind-driven ocean circulation [24,25], through an 

idealized case study based on a four-variable excitable model [26] subjected to an aperiodic external 

forcing having both a decadal time-scale variability as well as higher frequency fluctuations. 

The first issue (i) concerns the identification of the system’s IV. In long-term climate change 

simulations the nonautonomous nature of the system is typically associated with temporal drifts 

imposed on some parameters, such as the CO2 concentration [e.g., 10,13,15]: in such a situation the 

IV and forced variability (FV) are well represented by the ensemble spread and mean, respectively. 

In other recent PBA numerical model studies [14,27], ES hindcasts are instead performed in which 

the excitable [28-30] conceptual ocean model [26] is forced by an idealized aperiodic surface wind 

field possessing decadal time scales that are comparable to those of the system’s intrinsic relaxation 

oscillations (ROs [31,30]). In this case the forcing can pace or even excite the ROs, which can 

therefore contribute substantially to the FV despite their intrinsic nature; as a consequence, a clear 

separation between the IV and FV is not possible in this case. This subtle and general issue, relevant 

in particular for climate ESs under fluctuating forcing, will be investigated in our idealized case study 

by making direct reference to the system’s PBA. 

The second issue (ii) concerns the impact of the number of ensemble members 𝑁 on the statistical 

significance of the ES. In the analysis of conceptual models with few degrees of freedom, thanks to 

the limited computational cost of the numerical integrations an 𝑁 = 𝑂(104 ÷ 109) can be adopted 

[e.g., 3,14,27,10], in which case the PBA and its natural probability measure can be estimated 

accurately. On the other hand, for more realistic climate systems, only single-model ESs with a 
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limited number of members [𝑁 = 𝑂(102)] can currently be carried out; for example, 𝑁 = 40 in [13], 

𝑁 = 192 in [15], 𝑁 = 50 in [32], 𝑁 = 100 in [33]. In these cases a question arises: to what extent is 

the resulting statistical information representative of the PBA, whose detailed structure remains 

unknown? To this respect, it could be useful to develop a process study in which small ESs are 

systematically compared with the PBA in a case in which the latter can be determined, that is, if the 

system is governed by a conceptual model. Although the obtained results could not be directly 

extended to realistic models, they could nonetheless provide useful information for designing future 

realistic model ESs. An analysis of this kind is carried out here (for the first time, at the best of the 

author’s knowledge) in the framework of our idealized case study.  

The paper is organized as follows. In section 2 the mathematical model, its autonomous behaviour 

and the adopted ensemble simulation strategy are presented. In section 3 the system’s PBA is derived 

and the IV and FV are investigated [issue (i)]. Three small ESs are presented in section 4 and two 

additional small ESs are presented in section 5 to analyse sensitivity to initial data; in both sections 

comparison with the PBA is carried out [issue (ii)]. Still in the framework of issue (ii), in section 6 

an analysis of the convergence of the small ESs to the PBA, also based on novel quantifiers 

specifically conceived for this purpose, is presented. Finally, in section 7 conclusions are drawn. 

2 The mathematical model and the ensemble simulation strategy 

2.1 The model 

The conceptual ocean model [26] used in this study was derived to complement, with an agile 

mathematical tool, a series of model studies of the Kuroshio Extension (KE) low-frequency 

variability (LFV) performed with a reduced-gravity primitive equation ocean model [e.g., 34-36]. 

Thanks to its efficient computational cost, the same low-order model was later used for several 

theoretical studies that could not have been carried out with primitive equation models [37,38]. In 

addition, the same model was adopted to represent the ocean dynamics in low-order climate models 
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[39,40]. For all the technical details the reader should refer to [26]; here only the main mathematical 

aspects are recalled.  

The system is governed by the evolution equation of potential vorticity in the quasigeostrophic 

approximation on the beta-plane and in the reduced-gravity approximation [e.g., 41] for a fluid 

contained in a rectangular domain with dimensionless coordinates 𝑥, 𝑦 ∈ [0, 𝜋]. After a severe 

truncation of a Galerkin projection of these partial differential equations one gets the following 

system of four coupled nonlinear ordinary differential equations for the variables 

[Ψ1(𝑡), Ψ2(𝑡), Ψ3(𝑡), Ψ4(𝑡)] [26]: 

𝑑𝚿

𝑑𝑡
+ 𝚿𝐉𝚿 + 𝐋𝚿 = 𝐺(𝑡)𝐰.                                                           (1) 

For the definition of the various coefficients summarized by the rank-3 tensor 𝐉 and rank-2 tensor 𝐋, 

for the vector 𝐰 representing the double-gyre surface wind stress curl forcing (assumed, in the present 

idealized framework, to be the same for both the mean and variable components) and for all the 

parameter values the reader should, again, kindly refer to [26]. 

In the present study, the time dependence 𝐺(𝑡) of the atmospheric forcing in (1) is defined as 

follows: 

𝐺(𝑡) = 𝛾 {1 + 𝐻𝐿𝐹(𝑡) + 𝐻𝐻𝐹(𝑡) + 𝜀3

𝜁3(𝑡)

𝜎3
} ;   𝐻𝐿𝐹(𝑡) = 𝜀1𝐹𝑇𝑓

[
𝜁1̅(𝑡)

𝜎1
] ;   𝐻𝐻𝐹(𝑡) = 𝜀2

𝜁2̅(𝑡)

𝜎2
   (2) 

where 𝛾 = 1.1, 𝜀1 = 0.2, 𝜀2 = 0.1, 𝜀3 is a positive dimensionless constant, 𝜁1̅, 𝜁2̅ (used throughout 

the present study) and 𝜁3 are specific realizations (with 𝜎1, 𝜎2 and 𝜎3 their respective standard 

deviations) of red noise processes with decorrelation times 𝑇𝑠1 = 15 𝑦𝑒𝑎𝑟𝑠, 𝑇𝑠2 = 1 𝑦𝑒𝑎𝑟 and 𝑇𝑠3, 

respectively. In 𝐻𝐿𝐹, 𝐹𝑇𝑓
 is a sliding window filter of width 𝑇𝑓 = 15 𝑦𝑒𝑎𝑟𝑠 and the realization 𝜁1̅ is 

the same adopted by [14], so that 𝛾(1 + 𝐻𝐿𝐹)𝐰 is the same forcing used in one of their two reference 

simulations (see section 2b and Figs. 2a and 2c,e therein). Finally, for the sake of simplicity, in the 

discussion the following positions will be used: 
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𝐻(𝑡) = 1 + 𝐻𝐿𝐹(𝑡) + 𝐻𝐻𝐹(𝑡);     ℎ(𝑡) = 𝜀3

𝜁3(𝑡)

𝜎3
,                                       (3) 

so that 𝐺 = 𝛾(𝐻 + ℎ). In summary, 𝛾𝐰 is associated with the climatological time-independent 

forcing, 𝛾𝐻𝐿𝐹𝐰 is the smooth low-frequency forcing of [14] (representing a schematic North Pacific 

multidecadal variability), 𝛾𝐻𝐻𝐹𝐰 adds a high-frequency component to the forcing and the random 

perturbation 𝛾ℎ𝐰, used as an auxiliary noise for technical purpose, will be discussed in section 4.3. 

Finally, all the noises satisfy the Ornstein-Uhlenbeck stochastic differential equation characterized 

by a decorrelation time 𝑇𝑠. In Fig. 1 the thick line shows (1 + 𝐻𝐿𝐹) (corresponding to Fig. 2a of [14]) 

while the thin line gives the total time dependence 𝐺/𝛾 = 𝐻 for a specific realization 𝜁2̅(𝑡) in 𝐻𝐻𝐹, 

which will be used throughout the present study. It is worth noting that, while all the dependent 

variables and (𝑥, 𝑦) are dimensionless, the time 𝑡 is kept dimensional (as in Fig. 1 and in all the 

remaining figures) to stress the typical time scales of the oceanographic phenomenon (the KE LFV) 

that has inspired the low-order model, which are correctly reproduced by the latter.  

 

Fig. 1 Thick line: (1 + 𝐻𝐿𝐹) defined in (2,3) representing a schematic North Pacific multidecadal variability. 

Thin line: total time dependence 𝐺/𝛾 = 𝐻.    

2.2 The autonomous system’s behaviour 

Here the behaviour of the autonomous version of model (1) (i.e., with 𝜀1 = 𝜀2 = 𝜀3 = 0 in (2)) is 

considered in the framework of dynamical systems theory. The bifurcation diagram of Fig. 2a is 

obtained by performing many forward time integrations, all initialized from rest, and shows the range 

of variability of Ψ1 vs. the forcing amplitude 𝛾. The first Hopf bifurcation, marking the transition 
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from a steady state to a limit cycle, occurs at 𝛾 = 0.348, but it is only for 𝛾 ≳ 0.94 that the limit 

cycle becomes of appreciable amplitude; the critical value 𝛾 = 1 marks the tipping-point transition 

from small amplitude oscillations to large amplitude ROs. Fig. 2b shows the map of the decimal 

logarithm of the probability 𝑝 of localization of the trajectories in the (Ψ1, Ψ3) plane (see section 3 

for an exact definition of this quantity) in the case 𝛾 = 1.1, while in Fig. 2c a sequence of snapshots 

of the streamfunction 𝜓 for 𝛾 = 1.043 illustrates the spatial character of a typical RO; as discussed 

in [26], this oscillation provides a conceptual minimal model of the KE LFV.  

To study the transition of the autonomous model (1) from limit cycles to strange attractors, a new 

diagnostic method based on ESs performed with the same model and forcing but with different initial 

data, has been recently proposed [27]. The system is found to be periodic, except for limited intervals 

centred at 𝛾 ≅ 1.25 and 𝛾 ≅ 1.335, until an abrupt transition to chaos occurs at 𝛾 = 1.3475. 

 

Fig. 2 (a) Bifurcation diagram of the autonomous ocean model; the range of variability of 1 after spinup is 

plotted vs.  (adapted from [26]. (b) Map of the decimal logarithm of the probability of localization of the 

trajectories in the (Ψ1, Ψ3) plane for =1.1 (white colour corresponds to minus infinity, i.e., to boxes in which 

no trajectory happened to fall). (c) Sequence of snapshots of  for =1.043 with time increment of 

4 𝑦𝑒𝑎𝑟𝑠 illustrating the spatial structure of a typical RO (adapted from [38]).   

2.3 The ensemble simulation strategy 

A large ES and several small ESs are performed: the former is used to obtain the PBA and to 

investigate issue (i) while the latter are used to investigate issue (ii). Since, as already discussed in 

sections 2.1 and 2.2, the governing equations (1) are the same used in [14,27], the same number of 

ensemble members 𝑁 = 15,000 and the same distribution of the initial data at 𝑡0 = 0 (small black 
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dots in Fig. 3a) will be used to estimate the PBA with the ES ES0 (Table 1): this has the advantage 

to allow for an easier comparison with the previous results.  

As for the small ESs (ES1-6), in consideration of the oceanographic nature of model (1), the same 

number of members used in the global oceanographic NEMO hindcasts [32] (𝑁 = 50) is adopted. 

The initial data will be produced following a classical approach, as follows. First, it is assumed (for 

ES1 and ES4) that the system lies at a given arbitrary point 𝑃0 (belonging to the PBA) at 𝑡0 =

200 𝑦𝑒𝑎𝑟𝑠. Then, 50 integrations, all starting from 𝑃0, are carried out for 20 𝑦𝑒𝑎𝑟𝑠, each being 

perturbed by an ℎ, defined in (3), with a different noise realization. The 50 final states thus obtained 

will constitute the initial data for ES2-3 (black dots in Fig. 7b) and ES5-6 (black dots in Fig. 13b), as 

summarized in Table 1. 

Ensemble 

simulation 

Number 

of 

ensemble 

members 

G/ 𝜺𝟑 
𝑻𝒔𝟑 

(𝒚𝒆𝒂𝒓𝒔) 

𝒕𝟎;  𝒕𝟏 

(𝒚𝒆𝒂𝒓𝒔) 

Initial 

data 

from: 

𝒁 = 
𝝈𝑴𝑬𝑽

𝝈𝑬𝑺𝑽
 

ES0 15,000 𝐻 - - 0; 400   

ES1 50 𝐻 + ℎ 0.2 0.5 200; 220 𝑃0 (ES0) - 

ES2  50 𝐻 - - 220; 280 ES1 0.60 

ES3 50 𝐻 + ℎ 0.1 1.0 220; 280 ES1 0.32 

ES4 50 𝐻 + ℎ 0.05 0.5 200; 220 𝑃0 (ES0) - 

ES5 50 𝐻 - - 220; 280 ES4 0.99 

ES6 50 𝐻 + ℎ 0.1 1.0 220; 280 ES4 0.41 

 
Table 1 List of the ensemble simulations carried out in the present study. For the definition of  
𝐻 and ℎ see section 2.1; the parameters 𝜀3 and 𝑇𝑠3 refer to the auxiliary noise ℎ. 

3 The system’s pullback attractor 

If the external forcing and/or some parameter depend on time, a time-dependent subset 𝐴(𝑡) of phase 

space exists which is, together with the probability measure supported on this set, invariant under the 

governing equations and to which any trajectory, initialized in the remote past, converges: in this case 
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𝐴(𝑡) is called the system’s PBA (e.g., see [42,43] for rigorous mathematical treatments and [1,3] for 

a more accessible mathematical introduction in the framework of climate dynamics).  

Thus, the PBA 𝐴(𝑡) provides the natural extension, to a nonautonomous system, of the attractors 

of autonomous systems, and is the set of all possible states the system -governed by a specific set of 

equations and driven by a specific external time-dependent forcing- can assume at time 𝑡.  

How can a PBA be determined? Its very definition suggests how to proceed in a numerically based 

approach: the ensemble of trajectories obtained by forward time integration of many different initial 

states starting from 𝑡 = 𝑡0 provides a good approximation of 𝐴(𝑡) for a sufficiently remote 𝑡0. This 

approach was recently followed in [38,14,27] to study several properties of system (1) that are likely 

to be generic of nonautonomous dynamical systems; other recent studies are carried out in the same 

context [e.g., 4,44,10]. 

A limited number (750) of trajectories initialized at 𝑡0 = 0 and integrated for 𝑡𝑙𝑖𝑚 = 400 𝑦𝑒𝑎𝑟𝑠 

provides, in Fig. 3a, a graphical representation of the PBA of system (1) subjected to the forcing 

𝛾𝐻𝐰  [see the thin line of Fig. 1 for 𝐻(𝑡)]. On the other hand, to obtain a significant estimate of the 

PBA, in the ES denoted ES0 (Table 1) many more trajectories (𝑁 = 15,000) are initialized at 𝑡0 = 0 

in a subset  of phase space defined as follows: 

Ψ1, Ψ2 ∈ [−70,150];  Ψ3, Ψ4 ∈ [−150,120].                                           (4) 

Following [26], the conditions Ψ1 = Ψ2 and Ψ3 = Ψ4 are imposed at 𝑡0. For the sake of graphical 

clarity, only Ψ1(𝑡) and Ψ3(𝑡) contained in the rectangle Γ = {−70 ≤ Ψ1 ≤ 150, −150 ≤ Ψ3 ≤

120 } ⊂  are shown throughout the paper. [14] showed that the same system subjected to the LF 

forcing given by the thick line of Fig. 1 yields a transient of about 15 ÷ 20 𝑦𝑒𝑎𝑟𝑠; analogously, here 

the trajectories can be considered to be representative of the PBA for 𝑡 ≳ 20 𝑦𝑒𝑎𝑟𝑠.  
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Fig. 3. (a) Grey lines: graphical representation (750 trajectories) of the PBA of system (1) subjected to the 

forcing 𝛾𝐻𝐰; in the same panel the intersection of the PBA –as determined by 15,000 trajectories– with  is 

shown at 𝑡 =0 (black dots), 𝑡 = 200 𝑦𝑒𝑎𝑟𝑠 (cyan dots) and 𝑡 = 400 𝑦𝑒𝑎𝑟𝑠 (black dots). (b) Map of the 

decimal logarithm of the probability of localization of the PBA trajectories, 𝑃𝑖 in at 𝑡 = 200 𝑦𝑒𝑎𝑟𝑠 (white 

colour corresponds to minus infinity). 

 

In the same Fig. 3a, the intersection of the PBA with Γ is shown at 𝑡 = 0, 200, 400 𝑦𝑒𝑎𝑟𝑠 by black, 

cyan and, again, black dots, respectively. Finally, Fig. 3b shows the map of 𝑃𝑖(𝑡) = log10 𝑝𝑖(𝑡) at 

𝑡 = 200 𝑦𝑒𝑎𝑟𝑠, where 𝑝𝑖 = 𝑛𝑖/𝑁 is the probability of localization of the trajectories within Γ (𝑛𝑖 is 

the number of trajectories contained -at time 𝑡- in the 𝑖-th cell belonging to the square grid with steps 

ΔΨ1 = ΔΨ3 = 1). Moreover, following [14,27], a statistical characterization of the PBA is provided, 

for Ψ3, by the map of Fig. 4a, showing the decimal logarithm of the probability of localization of the 

trajectories 𝑃Ψ3
(𝑡) as a function of time for ES0 (the adopted normalization is described in [14]). 

In Fig. 4b the thick line denotes the ensemble mean 〈Ψ3〉(𝑡) computed over the members Ψ3
(𝑘)(𝑡),

𝑘 = 1, … , 𝑁 (from now on, 〈∙〉 ≡ ∑ ∙𝑁
𝑘 /𝑁), while the grey shading shows the interval 2𝜎Ψ3

 centred 

around 〈Ψ3〉, where 𝜎Ψ3
 is the ensemble standard deviation:   

𝜎Ψ3
(𝑡) = √〈[Ψ3(𝑡) − 〈Ψ3〉(𝑡)]2〉  .                                                     (5) 

Besides, the mean ensemble variability (MEV) and ensemble spread variability (ESV) are introduced: 

𝜎𝑀𝐸𝑉 = √[〈Ψ3〉(𝑡) − 〈Ψ3〉̅̅ ̅̅ ̅̅ ]
2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

;    𝜎𝐸𝑆𝑉 = √〈[Ψ3(𝑡) − 〈Ψ3〉(𝑡)]2〉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ;    𝑍 =
𝜎𝑀𝐸𝑉

𝜎𝐸𝑆𝑉
                (6) 
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where the overbar indicates temporal mean over the 400 years-long time series. The result for ES0 is: 

𝜎𝑀𝐸𝑉 = 29.0; 𝜎𝐸𝑆𝑉 = 39.8;  𝑍 = 0.73.  

 

Fig. 4 (a) Probability of localization of the trajectories 𝑃Ψ3
(𝑡) for ES0 (white colour corresponds to minus 

infinity). (b) Thick line: ensemble mean 〈Ψ3〉. Grey shading: interval of twice the ensemble standard deviation 

𝜎Ψ3
centred around 〈Ψ3〉.   

 

It is customary to use 𝜎𝑀𝐸𝑉 (𝜎𝐸𝑆𝑉) as a measure of the FV (IV), e.g., as done in [45] with reference 

to the NEMO-ES [32]. However, these two forms of variability cannot be unambiguously separated 

due to the nonlinear nature of the system. Fig. 5 is used to clarify this issue [(i), see the Introduction] 

 

Fig. 5 Black lines: time section of the PBA (ES0) in terms of Ψ3(𝑡) (only 750 time series, i.e., one out of every 

20 among the 15,000 available, is selected for the sake of graphical clarity). The blue line is a single time series 

belonging to the ensemble represented by black lines; the yellow line gives 〈Ψ3〉.     
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for the specific case under consideration. The black lines show 750 time series Ψ3(𝑡) among those 

composing the PBA in the temporal interval 𝑡 = 200 − 280 𝑦𝑒𝑎𝑟𝑠; the yellow line shows 〈Ψ3〉 

(corresponding to the black line of Fig. 4b), while the blue line is a single time series (belonging to 

the ensemble represented by black lines) taken as an example. The latter evidences an aperiodic RO 

modulated by the forcing (Fig. 2c shows the spatial character of this oscillation). The black lines show 

that the phases of the ROs are not distributed randomly but are, instead, clustered in some groups due 

to the pacing of the time-dependent forcing. By comparing these clusters with the ensemble mean it 

can be easily realized that the latter depends strongly on the structure of the intrinsic ROs (for 

example, compare the yellow line with the black lines within the intervals 𝑡 = 210 − 225; 245 −

265 𝑦𝑒𝑎𝑟𝑠). In conclusion, the ensemble mean depends crucially on intrinsic aspects of the LF 

variability, therefore it cannot be identified with the FV. 

4 Small ensembles of simulations 

4.1 Generation of the initial spread (ES1) 

As anticipated in section 2.3, the initial data from which ES2-3 is derived are obtained by adopting a 

classical methodology such as, for example, that used in [32,45-47] to analyse the intrinsic ocean 

variability with a global eddy-permitting ocean–sea-ice NEMO hindcast. With simulation ES1 (Table 

1), a small ES consisting of 50 initial states at 𝑡 = 220 𝑦𝑒𝑎𝑟𝑠 is constructed starting from a point of 

the PBA at  𝑡 = 200 𝑦𝑒𝑎𝑟𝑠. At that time instant the system can lie in any of the states given by the 

cyan dots of Fig. 3a, with corresponding log10 𝑝𝑖 shown in Fig. 3b: let us assume that the system 

actually lies at point 𝑃0 (given by the intersection of a specific trajectory with  at 𝑡 = 200 𝑦𝑒𝑎𝑟𝑠) 

with Ψ1 = 26.27, Ψ2 = 141.54, Ψ3 = −33.57, Ψ4 = −7.75 (Fig. 6). In ES1, 50 forward time 

integrations starting from 𝑃0 are carried out for 20 years, each member being perturbed by an ℎ (see 

section 2.1) with a different noise realization, but all with 𝜀3 = 0.2 and 𝑇𝑠3 = 0.5 𝑦𝑒𝑎𝑟𝑠.  
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The result is shown by the blue lines of Fig. 6; in Fig. 7a the corresponding Ψ3–time series are 

reported. The final points at 𝑡 = 220 𝑦𝑒𝑎𝑟𝑠 (shown in Fig. 7b, in black, superimposed on those of 

ES0, in cyan) are spread over an area comparable to that of the PBA: these are the initial points of 

simulations ES2-3. 

 

Fig. 6 Evolution of the 50 trajectories of ES1. The black dot at 𝑡 = 200 𝑦𝑒𝑎𝑟𝑠 is the initial point 𝑃0 in . The 

cyan dots are the intersection of the PBA –as determined by 15,000 trajectories– with  at 𝑡 = 200, 220 𝑦𝑒𝑎𝑟𝑠. 

The black dots at 𝑡 = 220 𝑦𝑒𝑎𝑟𝑠 are the intersection of the 50 trajectories of ES1 with . 

 

 

Fig. 7 (a) Ψ3–time series of ES1 for 𝑡 > 200 𝑦𝑒𝑎𝑟𝑠 (blue lines; the black line corresponds to the trajectory 

of the PBA lying at 𝑃0 at 𝑡 = 200 𝑦𝑒𝑎𝑟𝑠 chosen for the initialization). (b) Intersection of the PBA (cyan dots) 

and of the trajectories of ES1 (black dots) with  at 𝑡 = 220 𝑦𝑒𝑎𝑟𝑠.   
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4.2 A deterministic ensemble simulation (ES2) 

In ES2 the 50 final points of ES1 at 𝑡 = 220 𝑦𝑒𝑎𝑟𝑠 are integrated for 60 years under the same forcing 

𝛾𝐻𝐰 of the PBA. The result is shown in terms of the (green) trajectories in Γ in Fig. 8. The MEV and 

ESV of ES2 are shown in Fig. 9a.  

 

Fig. 8 Evolution of the 50 trajectories of ES2. The black dots are the intersection of the trajectories with  at 

𝑡 = 220 𝑦𝑒𝑎𝑟𝑠 and 𝑡 = 270 𝑦𝑒𝑎𝑟𝑠. 

 

 

Fig. 9 (a) Thick (thin) line: ensemble mean 〈Ψ3〉 of ES2 (ES0). Green shading: interval of twice the ensemble 

standard deviation 𝜎Ψ3
centred around 〈Ψ3〉 for ES2. (b) Intersection of the PBA (cyan dots) and of the 

trajectories of ES2 (black dots) with  at 𝑡 = 270 𝑦𝑒𝑎𝑟𝑠. 

 

Comparison of 〈Ψ3〉 (thick line) with the corresponding quantity for ES0 (thin line) shows that the 

MEV of ES2 provides a good approximation of the same quantity derived from the PBA already after 

≈ 20 𝑦𝑒𝑎𝑟𝑠 of integration (basically the predictability time characterizing the PBA, see section 3) 

despite the much smaller number of members. The difference is mainly in the MEV, which is now 
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smaller (𝜎𝑀𝐸𝑉 = 22.77; 𝜎𝐸𝑆𝑉 = 38.15, the ratio 𝑍 is in fact slightly smaller: 𝑍(𝐸𝑆2) = 0.60 vs 

𝑍(𝐸𝑆0) = 0.73), but it should be reminded that 𝑍(𝐸𝑆0) is computed over the whole 400 years of the 

PBA. Fig. 9b shows that the initial departure from the PBA (Fig. 7b) is soon removed during ES2. 

4.3 A random ensemble simulation (ES3) 

As already seen, the main problem arising in the determination of the FV and IV from the ensemble 

mean and spread is the pacing effects induced by the full forcing, which lead to the clustering of RO 

phases, as evident in Fig. 5 for ES0 and in Fig. 9a for ES2. With reference to ES2, it could be 

conjectured that if the forcing were perturbed by a noise -each ensemble member being subjected to 

a different realization- the pacing would occur differently in each of them. If, in addition, such 

perturbations were sufficiently weak not to modify substantially the character of the variability, then 

the ESV could possibly provide a better estimate of the IV. With the random simulation ES3 this 

conjecture is explored; a future quantitative study relying also on synchronization quantifiers [e.g., 

48] will be needed to explore the applicability and effectiveness of the proposed methodology.  

ES3, differs from ES2 only in that, now, 𝐺/𝛾 = 𝐻 + ℎ, where ℎ is a red noise with 𝜀3 = 0.1, 𝑇𝑠3 =

1 𝑦𝑒𝑎𝑟 and, like in ES1, a different realization of the stochastic process is adopted for each member. 

The result is shown in terms of the (magenta) trajectories in Γ in Fig. 10. It is immediately evident 

that the RO phases are indeed more randomly distributed than in ES0 and ES2. In addition, the 

trajectories do not converge toward the PBA as effectively as in ES2 because of the different forcing, 

but they do remain close to the latter thanks to the small amplitude of the perturbation, as shown in 

Fig. 11b at 𝑡 = 270 𝑦𝑒𝑎𝑟𝑠 (see section 6 for a detailed analysis of this aspect).  

The MEV and ESV are reported in Fig. 11a. Unlike for ES2, the MEV (thick line) is substantially 

different from that of the PBA (thin line). As for the rms variabilities for ES2/3 one has 𝜎𝑀𝐸𝑉
(𝐸𝑆2)

=

22.8,  𝜎𝑀𝐸𝑉
(𝐸𝑆3)

= 13.6 and 𝜎𝐸𝑆𝑉
(𝐸𝑆2)

= 38.1,  𝜎𝐸𝑆𝑉
(𝐸𝑆3)

= 42.6, so that 𝑍(𝐸𝑆2) = 0.6,  𝑍(𝐸𝑆3) = 0.32. The 

ESV is, therefore, comparable in the two cases: this confirms that the character of the variability is 
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similar (apart from the phases) in ES2 and ES3. On the contrary, the MEV in ES3 is reduced by ~60% 

in comparison with that of ES2. 

 

Fig. 10 Evolution of the 50 trajectories of ES3. The black dots are the intersection of the trajectories with  at 

𝑡 = 220 𝑦𝑒𝑎𝑟𝑠 and 𝑡 = 270 𝑦𝑒𝑎𝑟𝑠.   

 

 

Fig. 11  (a) Thick (thin) line: ensemble mean 〈Ψ3〉 of ES3 (ES0). Green shading: interval of twice the ensemble 

standard deviation 𝜎Ψ3
centred around 〈Ψ3〉 for ES3. (b) Intersection of the PBA (cyan dots) and of the 

trajectories of ES3 (black dots) with  at 𝑡 = 270 𝑦𝑒𝑎𝑟𝑠.   

 

Thus, the FV, deprived however of the important pacing effect of the intrinsic ROs, is likely to be 

better represented by 〈Ψ3〉(ES3) than by 〈Ψ3〉(ES2); at the same time, the ESV is close to that of ES2 

and therefore of ES0. This suggests that 〈Ψ3〉(ES3) might in fact be used to extract a better statistical 

representation of the IV compared to that obtainable from ES2. However, in a nonlinear context, the 

phasing of the ROs (a very important aspect of the FV greatly reduced by the procedure) cannot be 
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singled out from the overall effect of the total forcing 𝐻 + ℎ, and this, in turn, affects the IV as well: 

this is a subtle aspect that should be investigated in a future study.   

5 Sensitivity to initial data (ES4-6) 

Still in the framework of issue (ii), in simulations ES4-6 the sensitivity of the MEV and ESV to the 

distribution of initial data is investigated. Assessing to what degree the initial data are representative 

of all the states the system can assume at a specific time instant is clearly an important issue. If, for 

example, the initial data were clustered in a limited region of the PBA, the system might not explore 

extended regions of the latter during the subsequent forward time integration, which is necessarily of 

limited temporal extent (in a sufficiently long integration the attractor would be, eventually, densely 

covered thanks to the system’s chaoticity, except if the initialization is limited to regions of  in which 

the normalized distance as defined in [14,27], is smaller than unity, which is never the case of the 

present initializations).  

To analyse this aspect, in ES4 (Table 1) ES1 is replicated by choosing a smaller stochastic 

perturbation ℎ (now 𝜀3 = 0.05 instead of 𝜀3 = 0.2). This produces a smaller spread, as evident by 

comparing Fig. 12 with Fig. 6 and Fig. 13 with Fig. 7. The ROs are now basically clustered in two 

groups (Fig. 13a) unlike the more random distribution of the RO phases in ES1 (Fig. 7a). Moreover, 

comparison of Fig. 13b with Fig. 7b shows that the spread of the final (black) points is reduced in 

ES4 compared with ES1 (in the latter case the black dots are spread over an area comparable to that 

of the PBA) but, at the same time, in ES1 the points depart from the attractor more than in ES4 and 

this will in turn require a longer time for convergence to the PBA. This suggests that choosing large 

amplitudes of ℎ implies two competing effects and should, therefore, be considered with caution. 

The subsequent evolution is given by ES5-6, which correspond to ES2-3, respectively, except for 

the initial data, now provided by ES4 instead of ES1. The results are summarized in Fig. 
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Fig. 12 Evolution of the 50 trajectories of ES4. The black dot at 𝑡 = 200 𝑦𝑒𝑎𝑟𝑠 is the initial point 𝑃0 in . The 

cyan dots are the intersection of the PBA –as determined by 15,000 trajectories– with  at 𝑡 = 200, 220 𝑦𝑒𝑎𝑟𝑠. 

The black dots at 𝑡 = 220 𝑦𝑒𝑎𝑟𝑠 are the intersection of the 50 trajectories of ES4 with . 

 

 

Fig. 13 (a) Ψ3–time series of ES4 for 𝑡 > 200 𝑦𝑒𝑎𝑟𝑠 (the line for 𝑡 < 200 𝑦𝑒𝑎𝑟𝑠 corresponds to the trajectory 

of the PBA lying at 𝑃0 at 𝑡 = 200 𝑦𝑒𝑎𝑟𝑠 chosen for the initialization). (b) Intersection of the PBA (cyan dots) 

and of the trajectories of ES4 (black dots) with  at 𝑡 = 220 𝑦𝑒𝑎𝑟𝑠.   
 

14: the impact of the limited initial spread is felt strongly in the deterministic simulation ES5 for 𝑡 ≲

245 𝑦𝑒𝑎𝑟𝑠 but it is much smaller for larger times (compare Fig. 14a with Fig. 9a). A similar 

conclusion can be drawn from the random simulation ES6 (compare Fig. 14b with Fig. 11a). Thus, 

simulations ES4-6 show that a reduced initial spread can greatly affect the ensemble mean and spread 

for the first few decades of integration, but this effect is reduced during the following evolution, when 

the chaotic character of the system has had enough time to act.  
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Fig. 14 (a) Thick (thin) line: ensemble mean 〈Ψ3〉 of ES5 (ES0). Grey shading: interval of twice the ensemble 

standard deviation 𝜎Ψ3
centred around 〈Ψ3〉 for ES5. (b) as in (a) but for ES6. 

6 Analysis of the convergence to the pullback attractor  

Still in the framework of issue (ii), the process of (typically exponential) convergence of the small 

ESs to the PBA is investigated in this section. This aspect is of fundamental importance in climate 

change studies [e.g., 11] and has been occasionally considered in the preceding sections. Here, a more 

systematic and general analysis based also on some novel time-dependent quantifiers is presented and 

discussed.   

 A first classical statistical tool is the system’s entropy as defined in information theory [49],  

𝑆𝐸𝑆(𝑡) = − ∑ 𝑝𝑖 ln 𝑝𝑖.

𝑖

                                                               (7) 

𝑆𝐸𝑆 (henceforth the ES is indicated as a subscript) measures the degree of system’s order and, 

therefore, provides a valuable indication about the statistical distribution of the ensemble members in 

phase space. The probability 𝑝𝑖(𝑡) in (7) is defined in section 3 (the sum is clearly extended to the 

cells with 𝑝𝑖 ≠ 0), but here the grid has a larger step (ΔΨ1 = ΔΨ3 = 5) to account for the small 

number of ensemble members in ES1-6. In Fig. 15a, the entropy 𝑆𝐸𝑆0 of the PBA is shown by the 

black line; 𝑆𝐸𝑆1 (blue line) starts from 0 at 𝑡 = 200 𝑦𝑒𝑎𝑟𝑠, when all the trajectories lie in a single cell 

containing 𝑃0 and reaches values comparable to 𝑆𝐸𝑆0 already at 𝑡~210 𝑦𝑒𝑎𝑟𝑠. 𝑆𝐸𝑆2 (green line) 

follows the temporal dependence of 𝑆𝐸𝑆0 from 𝑡 ≳ 255 𝑦𝑒𝑎𝑟𝑠, suggesting that convergence to the 

PBA has occurred, but it is systematically smaller than 𝑆𝐸𝑆0 because the number of ensemble 
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members in ES2 is much smaller than that of ES0, so that the PBA cannot be densely covered by 

ES2; yet, full convergence onto the PBA of the 50 trajectories is nonetheless achieved, as shown, for 

example, in Fig. 9b for 𝑡 = 270 𝑦𝑒𝑎𝑟𝑠. As for ES3 (magenta line), the stochastic perturbation 

prevents full convergence, as it increases the spread (so that 𝑆𝐸𝑆3 is larger than 𝑆𝐸𝑆0) and reduces the 

entropy variability, since the RO clustering (the origin of the LFV in 𝑆𝐸𝑆0 and 𝑆𝐸𝑆2) is also reduced. 

 

Fig. 15 Time series of the entropy as defined in (7) for ES0-3 (a) and ES4-6 (b). The lines of panel (a) are 

included in panel (b) with fainter colours for the sake of comparison. 

 

Fig. 15b shows the same quantities for ES4-6. The reduced initial spread at 𝑡 = 220 𝑦𝑒𝑎𝑟𝑠 

(compare 𝑆𝐸𝑆4 with 𝑆𝐸𝑆1) leads to a reduced 𝑆𝐸𝑆5 compared to 𝑆𝐸𝑆2 for the first three decades, but the 

two entropies virtually coincide afterwards; again, the chaotic system’s behaviour makes the 

asymptotic evolution statistically independent of the initialization. On the other hand, 𝑆𝐸𝑆6 tends to 

coincide with 𝑆𝐸𝑆3 just few years after 𝑡 = 220 𝑦𝑒𝑎𝑟𝑠 due to the stochastic perturbation in the 

external forcing. The entropies are thus consistent with the conclusions drawn in sections 4-5 and 

complement them with time-dependent statistical information about the ES spread. 

The ES entropy is a valuable statistical tool but it does not provide any direct information about 

the convergence of the ES to the PBA (two probability distributions could have the same entropy and 

be completely disjoint). Additional information to this respect can be given by the parameters 𝑅 and 

𝐷, which are now introduced. The first is: 

𝑅𝐸𝑆(𝑡) =
𝑚𝐸𝑆

𝑛𝐸𝑆
,                                                                       (8) 

where 
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𝑚𝐸𝑆 = ∑ 𝑎𝑖

𝑖

;   𝑎𝑖 = {
1  𝑖𝑓  𝑞𝑖 ≠ 0 𝑎𝑛𝑑 𝑝𝑖 ≠ 0    
 0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                         

;   𝑛𝐸𝑆 = ∑ 𝑏𝑖

𝑖

;   𝑏𝑖 = {
1  𝑖𝑓 𝑝𝑖 ≠ 0   
0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

    (9) 

in which 𝑞𝑖 and 𝑝𝑖 are the probabilities of localization of the trajectories of ES0 and ES in Γ, 

respectively. Thus 𝑚𝐸𝑆 is the number of cells that are occupied by at least one member of both ES 

and ES0 while 𝑛𝐸𝑆 is the number of cells occupied by at least one member of ES, so that 𝑅𝐸𝑆 = 1 if 

all the trajectories have converged to the PBA while 𝑅𝐸𝑆 = 0 if they all lie outside the PBA (here, as 

for 𝑆𝐸𝑆, ΔΨ1 = ΔΨ3 = 5 is found to be an optimal choice in consideration of the differing number of 

members of ES0 and of ES1-6). 

Fig. 16a shows 𝑅 for ES1-3. 𝑅𝐸𝑆1 = 1 initially because all the 50 initial points lie in 𝑃0; the random 

perturbation ℎ prevents convergence to the PBA, so that, at 𝑡 = 220 𝑦𝑒𝑎𝑟𝑠 only ~60% of the points 

lie on the latter (Fig. 7b). The further evolution under a similar random forcing (ES3, magenta line) 

does not modify substantially the situation. Instead, the evolution subjected to the same forcing of the 

PBA (ES2) leads the trajectories to rapidly converge to the latter, as shown by the green line (𝑅𝐸𝑆2 ≅

1 after 𝑡 ≳ 230 𝑦𝑒𝑎𝑟𝑠). Fig. 16b shows 𝑅 for ES4-6: the reduced initial spread at 𝑡 = 220 𝑦𝑒𝑎𝑟𝑠 

(Fig. 15b) leads to a nearly instantaneous convergence of ES5 to the PBA, while the randomly forced 

evolution (ES6) does not differ substantially from that of ES3.  

 

Fig. 16 Time series of the parameters 𝑅 and 𝐷 as defined in (8) and (10), respectively, for ES1-3 (a) and ES4-

6 (b). 

 

Another useful parameter is: 

𝐷𝐸𝑆(𝑡) =
𝑚𝐸𝑆

𝑛𝐸𝑆0
 ;   𝑛𝐸𝑆0 = ∑ 𝑐𝑖

𝑖

;   𝑐𝑖 = {
1  𝑖𝑓 𝑞𝑖 ≠ 0  

 0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
.                                (10) 
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𝐷 informs about the degree of coverage of the PBA; for example, virtually all the ES2-ensemble 

members converge to the PBA (𝑅𝐸𝑆2 ≅ 1, Fig. 16a) but 𝐷 shows that only ~15% of the cells occupied 

by the latter are also occupied by ES2 (𝐷𝐸𝑆2 ≅ 0.15, Fig. 16a).  

It is interesting to note that the random ES3 and ES6 attain a degree of coverage of the PBA 

comparable to that of the corresponding deterministic ES2 and ES5 (Fig. 16), despite the substantially 

different values of 𝑅. To understand how this is possible let us consider, for example, ES2 and ES3 

at 𝑡 = 270 𝑦𝑒𝑎𝑟𝑠 (see Figs. 9b and 11b): 𝑛𝐸𝑆2 = 24, 𝑛𝐸𝑆3 = 45, 𝑚𝐸𝑆2 = 24, 𝑚𝐸𝑆3 = 29 and 𝑛𝐸𝑆0 =

173. In ES3 many more cells are occupied than in ES2 (45 vs. 24) while a comparable number of 

cells belonging to ES0 are occupied in the two cases (29 vs. 24), so 𝐷𝐸𝑆2 ≅ 𝐷𝐸𝑆3; however, for ES3 

each cell shared with ES0 is occupied by just ~1 point on average, compared with ~2 points for ES2. 

This example suggests that a complementary information about the convergence should consider 

the number of points falling in each grid cell: this implies the evaluation of an appropriate distance 

between the probability distributions 𝐪 and 𝐩. The so-called Wasserstein distance is now being used 

in some studies of climate dynamics [e.g., 8,50]; however, its application to the present case is 

problematic because of the extremely large difference between the two data samplings. An alternative 

procedure is thus adopted.  

The following parameter is first introduced: 

𝑄𝐸𝑆(𝑡) = 1 −
1

2
∑|𝑞𝑖 − 𝑝𝑖|.

𝑖

                                                        (11) 

In 𝑄 the metric ∑ |𝑞𝑖 − 𝑝𝑖|𝑖  measures the distance between 𝐪 and 𝐩. If they coincide (perfect statistical 

convergence), 𝑄𝐸𝑆 = 1; if, on the contrary, they are totally disjoint (𝑞𝑖 = 0 if 𝑝𝑖 ≠ 0 and vice versa), 

𝑄𝐸𝑆 = 0. However, in consideration of the very small number of ensemble members contributing to 

𝐩, significant statistical convergence can never be achieved; therefore, a more useful parameter 

appears to be: 
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𝑄̃𝐸𝑆(𝑡) = 1 −
1

2
∑|𝑞̃𝑖 − 𝑝𝑖|;    𝑞̃𝑖 =

𝑞𝑖𝑎𝑖

∑ 𝑞𝑘𝑎𝑘𝑘
𝑖

,                                        (12) 

 [with 𝑎𝑖 defined in (9)], where 𝑞̃𝑖 refers only to the cells that are occupied by both ES and ES0. Thus, 

𝑄̃𝐸𝑆 measures the statistical convergence of ES to ES0 in the 𝑚𝐸𝑆 common cells.  

In Fig. 17, 𝑄̃ is reported for ES1-6. In Fig. 17a, ES1 yields perfect coincidence at 𝑡 = 200 𝑦𝑒𝑎𝑟𝑠 

(all trajectories lie on 𝑃0), with 𝑄̃𝐸𝑆1 decreasing due to the random forcing until the degree of 

similarity stabilises about 10 𝑦𝑒𝑎𝑟𝑠 before the end of the ES. The subsequent evolution in the random 

ES3 leaves 𝑄̃ basically unaltered on average; on the contrary, ES2 yields, as obvious, an increasing 

degree of statistical convergence. It is worth noting that, although virtually all trajectories lie on the 

PBA for 𝑡 ≳ 230 𝑦𝑒𝑎𝑟𝑠 (see 𝑅𝐸𝑆2 in Fig. 16a), 𝑄̃𝐸𝑆2 is appreciably less than unity: this is because p 

is too undersampled compared with q; in fact one would have 𝑄̃𝐸𝑆2 → 1 as 𝑁𝐸𝑆 → 𝑁. Finally, Fig. 

17b shows that 𝑄̃𝐸𝑆4 and 𝑄̃𝐸𝑆6 do not differ substantially from 𝑄̃𝐸𝑆1 and 𝑄̃𝐸𝑆3, respectively, apart near 

the matching time 𝑡 = 220 𝑦𝑒𝑎𝑟𝑠. On the other hand, 𝑄̃𝐸𝑆5 is appreciably smaller than 𝑄̃𝐸𝑆2 for 𝑡 ≳

260 𝑦𝑒𝑎𝑟𝑠: this is because the trajectories tend, more in ES2 than in ES5, to clusterize in regions of 

the PBA where 𝑞̃𝑖 is higher (to understand this, one can note that, e.g., in the interval 𝑡 = 265 −

280 𝑦𝑒𝑎𝑟𝑠, the width of the line bundle for ES0 -Fig. 5- is closer to that of ES2 than that of ES5). 

This implies, locally, a better sampling of 𝑝𝑖 which, in turn, leads to 𝑄̃𝐸𝑆5 < 𝑄̃𝐸𝑆2. 

 

Fig. 17 Time series of the parameter 𝑄̃ as defined in (12) for ES1-3 (a) and ES4-6 (b).     
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In conclusion, the system’s entropy 𝑆(𝑡) and the additional parameters 𝑅(𝑡), 𝐷(𝑡) and 𝑄̃(𝑡) have 

allowed to monitor the convergence of ES1-6 to the PBA. Due to the great difference in the data 

sampling between the small ESs and the PBA, the convergence process cannot be adequately 

described by a single quantifier; the combined use of these four parameters has instead proved to be 

suitable for a complete description of the process.  

7 Conclusions 

In this paper, the PBA of an excitable conceptual ocean model subjected to an aperiodic external 

forcing, whose variability has both low- (decadal time-scale) as well as higher frequency fluctuations, 

has been determined through a large ES; this is nowadays acknowledged to be the correct 

mathematical approach to analyse climate changes.  

The PBA is first used to analyse a crucial aspect of climate dynamics [issue (i)]: the identification 

of the system’s IV, i.e., of that part of the variability that is not due to a passive response to variations 

of the external forcing but rather to nonlinear mechanisms all internal to the climate system. To this 

respect, it is important to note that the case considered here differs from the classical long-term 

climate projections obtained with ESs based on intermediate-complexity (single) climate models.  

In those studies, the varying external forcing is typically the CO2 concentration, which does not 

present any fluctuation and is assumed to double over a long time period (e.g., 100 𝑦𝑒𝑎𝑟𝑠) in order 

to represent the main anthropogenic forcing, as done, for example in [10,13,15]. In such a case the 

ensemble mean of a generic climate parameter yields the same regularity of the temporal dependence 

of the forcing, while the ensemble spread, measured by the instantaneous ensemble standard 

deviation, is a highly variable signal with multiple time scales (see, for example, [13] and Fig. 1 

therein). Such a clear scale separation between the ensemble mean and spread makes them 

unambiguously representative of the system’s FV and IV, respectively.  
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In contrast, the present case study is a hindcast in which the forcing includes a full range of time 

scales (Fig. 1); in parallel, the resulting ensemble mean and spread yield complex temporal structures 

without any clear scale separation, as shown in Fig. 4 (this condition is similar, e.g., to the NEMO-

hindcast ES [46,32,45,47]). Now, the system’s intrinsic ROs can be paced, and therefore clustered 

over the PBA under the effect of the time dependent forcing [26,37,14], as discussed in section 3. 

Thus, the ensemble mean cannot be simply identified with the FV because it depends substantially 

on internal dynamical mechanisms; in turn, the FV and IV cannot in this case be unambiguously 

separated. This result suggests that caution should be taken in identifying the FV and IV with the 

ensemble mean and spread in climate phenomena in which the time-dependent external forcing 

interacts substantially with internal modes of variability. Of course, the ensemble mean and spread 

are always valuable parameters irrespective of their relation with the FV and IV.  

The other aspect dealt with in this paper concerns the relevance of the number of ensemble 

members 𝑁 on the statistical significance of the ESs [issue (ii)]. Since intermediate-complexity 

climate models currently impose 𝑁 = 𝑂(102), a natural question arises: to what degree are such ESs 

approximating the respective PBA? Obviously, this question remains without answer in the original 

context, but what can be done is to use a conceptual case study, in which the PBA can be accurately 

determined, and then construct small ESs to analyse their departure from, and convergence to, the 

PBA. A study of this kind has been done here for the first time (at the best of the author’s knowledge) 

with a conceptual model. To analyse the process of convergence, three parameters have been 

specifically designed: 𝑅(𝑡), which gives the relative number of ensemble members that have 

converged to the PBA, 𝐷(𝑡), which measures the degree of coverage of the PBA by the ensemble 

members and 𝑄̃(𝑡), which provides a statistical measure of the similarity. The results reveal a 

remarkable significance of the small ESs after a time from their initializations that is basically 

coincident with the system’s predictability time.  
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Future extensions include an assessment of the system’s predictability as a function of the location 

of the initial state on the PBA, an analysis of how this can be performed with small ESs, studies in 

which the external forcing and parameter values are modified.  
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