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Abstract

In this paper the Rossby dynamics, which is one of the main aspects of the oceanic
wind-driven variability, is reviewed, and the Lagrangian chaos associated with Rossby
waves in a closed domain is discussed in order to put in evidence Rossby wave trans-
port properties.

A discussion of the basic features of planetary and topographic, barotropic and baro-
clinic Rossby waves is presented. Evidence of the relevance baroclinic planetary
waves have in shaping the wind-driven response of large oceans, both at mid and low
latitudes, is given by discussing data obtained recently by the TOPEX/POSEIDON al-
timeter. As far as the Mediterranean Sea is concerned, modeling results are shown
supporting the possibility that barotropic planetary Rossby wave variability be present
in the western basin. The discrete spectrum associated with the Rossby dynamics in
a closed domain is then considered. Numerical results concerning the Strait of Sicily
and the Iceland-Faeroe ridge are presented as examples of topographic Rossby nor-
mal modes. Laboratory modeling of such dynamical features performed in the large
“Coriolis” rotating tank in Grenoble is also discussed.

We then pass to consider an analytical model for Rossby normal modes in a circular
domain, and the Lagrangian chaos associated with these motions. The Poincaré maps
of the evolution of an initial patch of particles show the different degree of Lagrangian
chaos for different amplitudes of the flow and the classical stirring and folding of
material lines. The first normal mode leads to a strong mixing in the direction of
phase propagationwhile the secondmode produces a stronger dispersion in the normal
direction. A quantitative analysis of chaotic advection is carried out by computing
in several relevant cases the particle pair correlation function H and the Finite Size
Lyapunov Exponent, yielding that such a mechanism may contribute significantly to
tracer dispersion in basins characterized by the presence of Rossby normal modes.

I. INTRODUCTION

The time-dependent dynamics of large-scale subinertial motions in the atmosphere
and oceans is shaped by Rossby waves (also known as planetary waves, PRWs). They
are quasigeostrophic, baroclinic or barotropic rotational waves whose existence de-
rives from the conservation of potential vorticity of fluid columns in an ambient in
which planetary vorticity varies with latitude (the so-called beta-effect). In the atmo-
sphere Rossby waves constitute the basic dynamical feature of mid-latitude weather
patterns. In the ocean they provide the mechanism for the adjustment to the large

279



ISSAOS 2001

scale atmospheric forcing. More specifically, oceanic Rossby waves play a funda-
mental role in phenomena such as the westward intensification of the wind-driven
gyres, the oceanic response to large scale fluctuating winds, boundary current radia-
tion, etc.. A topographical counterpart of planetary Rossby waves exists in the form
of “topographic” Rossby waves (TRWs), particularly important in oceanography, for
which the variable ambient vorticity is provided by strong variations of the fluid depth.
Moreover, the continuous Rossby wave spectrum typical of horizontally unbounded
domains is complemented by a discrete spectrum of planetary or topographic Rossby
normal modes (PRMs, TRMs), associated to closed or semi-closed areas.

In this paper Eulerian and Lagrangian aspects of the oceanic Rossby dynamics are
considered. We begin by presenting an overview of some relevant examples of plane-
tary Rossby waves (section 2) and topographic Rossby waves and modes (section 3),
based on observational, modeling and laboratory studies in a Eulerian framework.
In section 4 a specific analytical solution of the quasigeostrophic equation represent-
ing forced Rossby waves and modes is discussed, and a discussion of the associated
chaotic advection (considered as a prototype of Rossby wave Lagrangian dispersion
properties) is finally presented in section 5.

II. PLANETARY ROSSBYWAVES

As mentioned in the introduction, Rossby waves are solutions of the so-called quasi-
geostrophic equation, which can be derived from the equation of conservation of po-
tential vorticity in the shallow-water approximation under the assumption of subiner-
tial motions. Consideration of the general theory of Rossby waves goes beyond the
scope of this paper: the interested reader not familiar with this topic can refer to classi-
cal and exhaustive text-books in the oceanographic context, such as those of Le Blond
and Mysak (1978), Gill (1982), and Pedlosky (1987; 1996). In section 4, however, de-
tailed reference is made to a particular Rossby wave problem that will be studied also
from a Lagrangian point of view in section 5. Here we limit ourselves to remind the
dispersion relation for Rossby waves on the mid-latitude β-plane in a 2-layer system:

ω =
−βkx

k2
x + k2

y + R−2
(2.1)

where ω is the angular frequency,k = (kx, ky) is the horizontal wave-number, x and y
are aligned along a parallel and a meridian respectively, β = (2Ω earth/Rearth) cosϕ
is the derivative of the Coriolis parameter f = 2Ωearth sin ϕ with respect to lati-
tude (Ωearth is the earth angular velocity, Rearth is the earth radius and ϕ is the
latitude), R = Re =

√
g (D1 + D2)/f is the external Rossby deformation radius for

barotropic waves and R = Ri =
√

g′D̄/f is the internal Rossby deformation radius
for baroclinic waves (where g is the acceleration of gravity, g ′ = g∆ρ/ρ is the “re-
duced gravity”,∆ρ/ρ is the relative variation of density in the two layers, D 1 and D2

are the depths of the two layers, and D̄ = D1D2/ (D1 + D2)). From (2.1) follows
that, for zonal wave-numbers (ky=0), the phase velocity cp = ω/kx is always west-
ward oriented while the group velocity (in the absence of mean flow) c g = dω/dkx is
westward for kx < R−1 but eastward for kx > R−1.
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Planetary Rossby waves in large oceans have recently been revealed with unprece-
dented accuracy, spatial extension and resolution from altimeter missions, in particular
from the most recent ones TOPEX/POSEIDON (T/P) and ERS 1-2. Since for Rossby
waves the geostrophic balance between the Coriolis force and the horizontal pres-
sure gradient force holds, the dynamically active sea surface height signal (obtained
from the altimeter data after subtraction of the steric height, tidal and inverted barom-
eter signals) allows one to derive the subsurface currents associated to them (e.g.,
Robinson, 1994; Pierini, 2002a). Perhaps the most striking example of Rossby wave
observations with T/P altimeter data is provided by Chelton and Schlax (1996), but
several other analyses of the same nature have been carried out (e.g., Polito and Cornil-
lon, 1997; Maltrud et al., 1998; White et al., 1998; Döös, 1999; Vivier et al., 1999;
Witter and Gordon, 1999; Cipollini et al., 2000; Kobashi and Kawamura, 2001).

The study of Chelton and Schlax (1996) provides an excellent overview of salient fea-
tures of baroclinic planetary Rossby waves (with periods above 3 months) as observed
fromT/P altimeter data. Alternating positive and negative sea level signals with a clear
sign of westward propagation are evident over most of the world oceans. The ob-
served frequencies span over a range≈0.5-2 cpy. The propagating signals account for
≈30% of the total variance at ϕ<15◦ and for ≈10% of the total variance at ϕ>30◦ (at
sufficiently high latitudes baroclinic Rossby waves cannot exist because (2.1) yields
a cutoff frequency at k=R−1 ). Baroclinic Rossby waves appear to originate mainly
from the eastern boundary, where local wind and buoyancy forcings may account for
part of their energy, but Rossby wave radiation as a consequence of the passage of
poleward traveling Kelvin waves generated at low latitudes is also an important (per-
haps the predominant) generating mechanism (Pierini, 2003). In the tropical belt (but
outside the equatorial waveguide, which is centered at the equator and embraces a lat-
itudinal belt of few degrees) weak westward penetration is found, associated with a
particular spatial structure known as beta-refraction pattern (e.g., White, 1977; Schopf
et al., 1981; Philander, 1990). This phenomenon is due to the refraction toward the
equator of low latitude baroclinic Rossby wave packets originating from the eastern
coast, for which the zonal group velocity (of O (10 cm/s)) increases with decreasing
latitude as ϕ−2. A recent model study (Pierini, 2003) of seasonally varying refraction
patterns has obtained a validation from the spatially integrated T/P altimeter observa-
tions of Stammer (1997). In the equatorial waveguide equatorial Rossby waves (e.g.
Gill, 1982) are found to travel westward with a speed of O (100 cm/s). For both mid-
latitude and equatorial Rossby waves the phase speed in the west exceeds that in the
east of up to≈50% because of the deepening of the thermocline in the west (associated
with the baroclinic compensation of the subtropical gyre equatorward return flow in
the oceanic interior), which implies a larger D1 , and thus a larger Ri , in the west than
in the east. Rossby waves are found to be generated also in mid-ocean regions mainly
because of the interaction of local currents with important topographic features (e.g.
the mid-ocean ridge in the North Atlantic or the Hawaiian ridge in the North Pacific).
Finally, also open ocean Ekman pumping accounts for Rossby wave generation.

Barotropic Rossby waves are much faster than baroclinic Rossby waves and shape
mainly the sub-seasonal barotropic response of the ocean to variable wind stress. They
also have been revealed by altimeter data (e.g., Chao and Fu, 1995; Fu and Davidson,
1995; Kobashi and Kawamura, 2001) and, instead of being generated at the eastern
boundary at mid and low latitudes (as happens for baroclinic waves, see above discus-
sion) they, on the contrary, appear to be originated at the western boundary at mid and
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high latitudes. Pierini (1998b) has interpreted this as the response of a linear-inertial
regime in the framework of a more general theory of wind-driven fluctuating west-
ern boundary currents, in which a second viscous regime yields westward intensified
Sverdrup oscillations of non-propagating character.

Are planetary Rossby waves expected to play a role also in smaller oceanic basins,
such as Mediterranean subbasins? For Rossby waves the smaller the spatial scales,
the smaller their frequencies (the planetary beta-effect needs a large latitudinal ex-
tension to be felt), therefore, in principle, only barotropic PRWs could be expected
to be present in the Mediterranean Sea. However, the topographic beta-effect (cor-
responding to a variable ambient “planetary” vorticity due to topographic variations)
was shown to cancel almost everywhere in the Mediterranean Sea the planetary beta-
effect. In a numerical process study about the effect of topography on the structure
of PRMs in a box (Pierini, 1997) it was shown that the presence of shelf and slope
topographies representing larger and larger regions of intense topographic beta-effect
leads to a progressive shift to lower frequencies of the lowest Rossby mode (because
of the reduced effective length scale of the basin) accompanied by a remarkable reduc-
tion of the amplitude at resonance. For large topographic gradients coveringmore than
90% of the total basin area (in the Mediterranean this represents a typical situation for
the Central Ionian and the Tyrrhenian Sea), the existence of planetary modes and even
any sign of westward propagation appears to be prevented by the overwhelming ac-
tion of the topographic steering. On the other hand, regions of very small topographic
gradients are present in the Mediterranean Sea (e.g. the Algero-Provençal basin west
of Sardinia or the south-western Ionian Sea) for which the existence of PRWs, though
modified by the topography, cannot in principle be ruled out. These are results of an
idealized process study; now the question arises as to whether the barotropic plane-
tary dynamics is really absent in the Tyrrhenian Sea and if it indeed plays some role
in the Algero-Provençal basin, as suggested by these numerical results. Experimen-
tal evidence of this would require current meter measurements in the deep sea, not
yet available, so at this stage numerical modelling is a valuable tool to investigate this
particular aspect of the circulation.

A numerical study was therefore carried out in order to analyze the actual existence of
Rossby modes in the Algero-Provençal basin (Pierini, 1998a). The dynamics forced
by the “National Meteorological Center” winds was studied in a domain including the
Western Mediterranean and part of the Ionian Sea. In order to focus on the part of
the flow that is strictly related to the Rossby dynamics -and therefore to the planetary
beta-effect- the barotropic shallow-water equations were solved with and without the
term βy in the Coriolis parameter and then the difference between the two fields thus
obtained was computed (we may denote this field as beta-residual). In the Algero-
Provençal basin a relevant beta-residual signal was indeed found, the corresponding
transport explaining about 30% of the total wind-driven signal. Episodes of Rossby
wave excitation and subsequent free propagation are evident in the Provençal basin
after all major wind stress anomalies. In the Tyrrhenian Sea, on the contrary, no
planetary Rossby wave activity is present, in agreement with the theoretical arguments
described above. An approximate two-month period can be roughly estimated for the
main Rossby wave episodes, in agreement with the first Rossby eigenperiod computed
for a 400x800 km rectangular domain.
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III. TOPOGRAPHIC ROSSBYWAVES AND MODES

In real oceanic basins lateral boundaries and bottom topography can play an impor-
tant role in several cases. As far as the effect of later boundaries is concerned, multiple
reflections at coasts can give rise to PRMs, with a discrete set of eigenperiods depen-
dent on the geometry of the basin. PRMs contribute to shape the very high frequency
barotropic variability of large oceans. Willebrand et al. (1980) showed in a numeri-
cal study that in the North Atlantic the characteristic time scale of dissipation is larger
than the time necessary for barotropic Rossby waves to propagatewestward across the
basin for the 4-5 lowest basin modes, so that they may be excited, with periods rang-
ing from 10 to 15 days. Pierini (1990, 1997) showed that in fact these modes can be in
equilibrium with the wind without any substantial westward intensification, while for
higher forcing periods the forced response is in terms of westward intensified Rossby
modes (Pierini, 1998b). In the Atlantic Ocean PRMs appear to have never been un-
ambiguously observed while in the Pacific Ocean Luther (1982) showed persuasive
evidence of a 4-6 day PRM with an energy e-folding time of less than three days.

As far as topography is concerned, at the end of the preceding section a case was con-
sidered (the Tyrrhenian Sea) for which the planetary beta-effect is completely over-
shadowed by an equivalent topographic beta-effect. Another important dynamical
consequence of topography on PRWs that deserves to be mentioned is that associated
to the interaction of the waves with a strong topographic variation with isobaths al-
most normal to the wave-number, such as the Atlantic mid-ocean ridge (e.g., Barnier,
1984; Matano, 1995; Pedlosky and Spall, 1999; Pedlosky, 2000). In other cases the
topographic beta-effect can support coherent Rossby waves denoted as topographic
Rossby waves (TRWs, e.g. Thompson, 1971, Thompson and Luyten, 1976, Okko-
nen, 1993). Obviously, these kinds of motions are basically barotropic, because only
for them the topographic effect manifests itself in terms of an equivalent beta-effect in
the potential vorticity balance (e.g., Pedlosky, 1987). On the other hand, the concur-
rent effect of topography and lateral boundaries can give rise to topographic Rossby
normal modes (TRMs).

TRMs (e.g. Ripa, 1978) are fundamental elements in the theory of long-period tides
(e.g. Wunsch, 1967; Platzman et al., 1981; Carton, 1983; Miller et al., 1993), deter-
mining locally the structure of the tidal response. However, only recently experimen-
tal and numerical evidence was provided suggesting that such dynamical features can
play an important role in coastal oceanography. In a study on the circulation over the
ridge connecting Iceland to the Faeroe islands, Miller et al. (1996) gave the first ex-
perimental evidence of a TRM. Both the experimental eigenperiod 1.8 days and the
corresponding spatial structure of the mode were satisfactorily explained by a shal-
low water model. Pierini (1996) applied a barotropic circulation model to the central
Mediterranean Sea and showed that TRMs with periods ranging from 2 to 5 days can
be excited in the Strait of Sicily by both wind anomalies and remote barotropic flows
produced by pressure fluctuations on a basin scale. Theoretical evidence that TRMs
can be excited in the Mediterranean Sea is also provided by Candela and Lozano
(1994). In general, because of their small periods, the possible existence of TRMs in
several oceanographic sites might not be revealed in residual current signals simply
because the modes may be filtered out together with the tidal currents. It is therefore
possible that TRMs could be more ubiquitous than is usually believed, also in view
of their ability to be excited easily by different forcing agents (Pierini, 1996). As-
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sessing this hypothesis would be relevant for the understanding of horizontal mixing
in regions of bounded topographic slopes. Sections 4-5 of this paper are devoted to
analyzing this aspect.

As far as laboratory studies are concerned, simulations in rotating tanks to model topo-
graphic Rossby waves have been carried out, for instance, by Sommeria et al. (1991).
Pedlosky and Greenspan (1967) and Beardsley (1975) conducted analytical, labo-
ratory and numerical investigations into the role of TRMs in the “sliced cylinder”
model. The combined process of Rossby wave generation, wave reflection at horizon-
tal boundaries and consequent excitation of normal modes in the laboratory has been
considered by Pierini et al. (2002), who performed laboratory simulations of TRMs
in the large “Coriolis” Rotating Platform in Grenoble following an original approach
inspired by numerical simulations carried out in the Sicily Strait (Pierini, 1996). The
basic feature of the bottom topographywas a linear slope of 4.3x2 m delimited by two
lateral walls. Since the studied motions are essentially barotropic, homogeneous wa-
ter was used. Unsheared currents were generated by a simple movement of a paddle
located in front of the topographic barrier. The conservation of potential vorticity for
the currents flowing onto the channel slope produced Rossby waves: reflections at the
lateral boundaries then led to the formation of propagating barotropic TRMs, whose
frequencies and spatial structures were selected by the physical system. The cur-
rents were measured every 30 seconds through the Correlation Imaging Velocimetry
method, which allowed an extremely detailed synoptic map of the horizontal veloci-
ties in an area (∼13 m2) including the slope. A variety of experiments were performed
in order to provide a complete process study in which the effect of different channel
lengths and rotation periods could be tested. Two different lengths of the linear slope,
4.3 and 3.3 m, and rotation periods ranging from 30 to 50 sec were considered. The
qualitative analysis of the 2D current patterns, and the good agreement found between
the measured eigenperiods and the periods obtained by means of a simple analytical
model, showed that in all cases the first Rossby normal mode was generated. More-
over, numerical simulations based on the shallow water equations, for a geometry
and paddle movements that matched closely the experimental setup, allowed to cal-
ibrate the analytical model and provided useful information on a discrepancy found
between experimental and analytical eigenperiods due to an oscillation of the normal
mode trajectory.

IV. AN ANALYTICALMODEL FOR FORCED ROSSBY NORMALMODES

In this section a specific analytical solution of the quasigeostrophic equation of conser-
vation of potential vorticity in terms of Rossby normal modes in a circle will be used
to analyze Lagrangian transport properties of Rossby dynamics in a simplified frame-
work. We introduce the following nondimensionalization (dimensional variables are
with overbars):

(x̄, η̄) = (x, η) R, t̄ =
t

βR
, ū = uβR2, τ̄ =

βρgDR

f0
τ

where x=(x,y) are the horizontal coordinates, u=(u,v) the horizontal velocities, η is the
sea surface displacement, R the radius of the circle E, D the constant water depth,
f = f0 + βy the Coriolis parameter, ρ the constant water density, τ the wind stress.
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With these positions the linearized quasigeostrophic, divergent equation of conserva-
tion of potential vorticity and the geostrophic balance in nondimensional variables
read (e.g., Pedlosky, 1987):{

∂
∂t

(∇2η − µη
)

+ ∂η
∂x = −curlzτ

u = χ
(
−∂η

∂y , ∂η
∂x

) (4.1)

with the nondimensional parameters µ and χ defined as:

µ =
R2f2

0

gD
, χ =

g

βR2f0

(µ is know as the divergence parameter). The boundary conditions complementing
problem (4.1) are:

η|∂E = C (t) ,
d

dt

∮
∂E

∇η · nds = −
∫ ∫

E

curlzτ d2x (4.2)

where the first expression, in which C (t) is an unknown function of time, is the free-
slip boundary condition and the second one expresses the conservation of mass. We
consider a wind stress oscillating with frequency Ω̄ = βRΩ, τ = τ0 (x) e−iΩt, with
curlzτ0 = const. Under these conditions the equilibrium solution of (4.1-2) in polar
coordinates (r, θ) is (Pierini, 1990):

ηΩ (x, t) = �e

{
i
curlτ0

µΩ

[
1 − µ

4Γ
ϕ (Ω,x)
H (Ω)

]
e−iΩt

}
(4.3)

where ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ϕ (Ω, x) =
∞∑

m=0

2
am

im Jm(1/2Ω)
Jm(Γ) Jm (Γr) cos (mθ) e−i r

2Ω cos θ

H (Ω) =
∞∑

m=0

J2
m(1/2Ω)

am

J′
m(Γ)

Jm(Γ)

Γ2 = 1
4Ω2 − µ, am =

{
2, m = 0
1, m ≥ 1

(Jm are the Bessel functions of the first kind). The homogeneous version of (4.1-2)
(τ = 0) admits solutions in the form of Rossby normal modes:

ηn (x, t) = �e
{
γ ϕn (x) e−iΩnt

}
(4.4)

where γ is an arbitrary constant and the eigenfrequencies and the eigenfunctions ϕ n

are given by:

H (Ωn) = 0, ϕn (x) = ϕ (Ωn,x) (4.5)

Thus, the equilibrium response (4.3) resonates at the Rossby eigenfrequencies of the
system. For Ω ≈ Ωn, however, solution (4.3) does not provide the amplitude of the
response since no limiting mechanisms such as dissipation and nonlinearities are taken
into account. In general, in order to represent the intensity of the basic flow we will
make use of an average value of the velocity induced at the forcing period T = 2π/Ω:
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〈|u|〉T =
1

π T

∫∫
E

d2x

T∫
0

|u| dt (4.6)

For a forcing frequency Ω far from an Ωn (4.6) provides a direct information about
the strength of the basic flow which is more useful than a quantity related to τ 0. If,
on the other hand, a normal mode will be considered, the arbitrary constant γ in (4.4)
will be set to provide a given 〈|u|〉. Figure 1 shows 〈|u|〉 versus the forcing period
for curlτ0 = 1 . The first four modes are evident, with periods T 1=30.40, T2=48.23,
T3=64.68, T4=69.46.

Fig. 1 - Average Eulerian velocity 〈|u|〉 versus the forcing period T for curlτ0 = 1.

The spatial structure of the first two modes is reported in Figure 2a,b. Note the leftward
(westward for a planetary mode, for which β>0) propagation typical of the Rossby
waves. In a rectangular domain Pedlosky (1987, sect. 3.25) showed that nondivergent
Rossby modes can be seen as the superposition of four appropriate Rossby waves all
having the same frequency. They can be grouped into two pairs, two long and two
short waves each pair being the result of the reflection of the other pair at the oppo-
site wall. All waves propagate their phase to the west and have the same energy flux.
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Fig. 2 - Streamfunction of the first mode (a, T=30.40); of the second mode (b, T=48.23); of a
mixed first-second mode (c, T=35); of a mixed oscillating boundary layer-first mode (c, T=10).
The three snapshots refer to t = 0, T/8, T/4.
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However, the group velocities of the long waves have a westward component while
those of the short waves have an eastward component, in such a way that the sum of
the energy flux vectors add to zero, which implies no energy transmission inside the
basin. This is, however, a typical Eulerian property which, as we will see, coexists
with very complex time, spatial and amplitude-dependent Lagrangian transport prop-
erties. Figure 2c shows the forced response at a period between the first and the second
mode (T=35), for which an intermediate spatial structure can be recognized. On the
contrary, the response shown in Figure 2d corresponding to T=10 is remarkably dif-
ferent from the previous ones. In this case, since the forcing period is smaller than the
lowest eigenperiod the propagating character of the flow weakens (being limited in a
central portion of the domain) and the response tends, for smaller and smaller periods
(but always in the subinertial range) to an oscillatory inertial boundary layer. To this
respect it is worth noticing that one of the nice features of solution (2.3) is that it is
continuously valid for both T>T 1 and T<T1 and, in the latter case, it correctly models
the oscillatory boundary layer thanks to its horizontal divergence (Pierini, 1990).

In the applications nondimensional quantities will be used but, in order to consider a
realistic situation one can, for example, refer to the dimensional case corresponding
to the TRMs obtained in the numerical study concerning the Straits of Sicily (Pierini,
1996). We can choose β=86.4x10−11 rad m−1s−1, f 0=0.88x10−4 rad s−1, R=150 km,
D=1000 m, so that with these parameters the time and velocity scales are 1/βR =
7716 s and βR2 = 19.44 m s−1 respectively, T̄1 = 2.7 days (the period of the most
energetic mode obtained from the numerical simulations) and T̄2 = 4.3 days. Another
example is that of the PRMs in the Mediterranean discussed by Pierini (1990) for
which β=1.6x10−11 rad m−1s−1, f 0=10−4 rad s−1, R=500 km, D=2000 m, 1/βR =
125000 s, βR2 = 4 m s−1, T̄1 = 44 days and T̄2 = 69.8 days.

V. CHAOTIC ADVECTION PRODUCED BY THE ROSSBY NORMALMODES

In this section we analyze the chaotic advection produced by the wind-driven flows
discussed in section 4. At first, a qualitative analysis of the behaviour of a passive
tracer can be carried out on the basis of the Poincaré maps, which describe the evo-
lution of a patch of particles at any given number of cycles. We therefore integrate
the trajectory equation for a velocity field given by (4.1) with (4.3) for 1000 particles
initially deployed with a regular spacing along a circumference with a radius r=0.33.

We start by considering the first normal mode, whose structure is reported in Fig. 2a.
Fig. 3 shows the position of the particles at 3, 6 and 9 cycles for three different am-
plitudes, 〈|u|〉 = 0.01, 0.05, 0.1. The first thing to be noticed is the highly nonlinear
character of the dispersion produced by the basic flow: while in the first case only a
small deformation of the initial patch is produced, a factor 5 in the average Eulerian
velocity leads to the typical behaviour of Lagrangian chaos, namely the stretching and
folding of material lines associated with the growth of tracer concentration gradients
(e.g. Ottino, 1989; Crisanti et al., 1991). A further factor 2 produces an almost com-
plete dispersal of the 1000 particles over the domain already after 6-9 cycles. Even in
this case, of course, if a larger number of particles were considered a finer stretching
and folding of lines would be observed. The intermediate amplitude case is partic-
ularly useful in revealing the anisotropy of the chaotic advection for the first normal
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Fig. 3 - Poincaré maps giving the evolved position of 1000 particles initially distributed as in
Figure 3. The basic flow is a first normal mode with 〈|u|〉=0.01 (upper time sequence), 0.05
(intermediate), 0.1 (lower).

mode. Indeed the evolution from 3 to 6 and 9 cycles evidences a mixing in the x-
direction stronger than the corresponding one in the y-direction. This can be better
observed in Fig. 4 (corresponding to the same amplitude) where particles initially are
evenly distributed all over the basin and each of them is tagged, as indicated in the
contours in the first two images on the left. In the upper time sequence, correspond-
ing to an initial gradient in the x-direction, it can be seen that after few cycles regions
of positive and negative particles are mixed up, denoting a strong mixing in this direc-
tion. On the contrary, a gradient in the y-direction evidences that the upper region of
positive particles remains well separated from a lower region of negative particles.

If we now pass to consider the second normal mode shown in Fig. 2b, quite a different
behaviour is found. The smaller scale features typical of the second mode are expected
to produce a faster chaotic advection, which is in fact observed in Fig. 5 (note that only
three cycles are shown compared to nine cycles of the first mode). It is interesting to
notice that, especially in the intermediate and large amplitude case, the mixing is now
mainly along y, as shown clearly in Fig. 6, where a behaviour in some sense opposite
to that of the first normalmode case is evident. Here the evolution of a particle gradient
along x evidences two almost disconnected regions (upper sequence), within which a
strong mixing along y is present (lower sequence).

Figs. 7 and 8 show the dispersion produced by the flows of Fig. 2c,d respectively. In
the mixed first-second mode case (Fig. 7) the dispersion appears to be more isotropic
than both the first and the second single modes. When the forcing period is smaller
than the lowest eigenperiod (Fig.s 2d and 8) the chaotic advection is limited to the
central region where a residual Rossby propagation is present, while in the oscillatory
boundary layer no relevant dispersion is found.
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Fig. 4 - Isolines af tagged particles at the initial time, when they are evenly distributed over the
basin, and at 2, 4 and 6 cycles for a first-mode basic flow with 〈|u|〉=0.05.

Fig. 5 - Poincaré maps giving the evolved position of 1000 particles initially distributed as in
Figure 3. The basic flow is a second normal mode with 〈|u|〉=0.01 (upper time sequence), 0.05
(intermediate), 0.1 (lower).

The figures show that, as classically expected, the result of mixing induced by chaotic
advection consists of a first phase of stretching and folding of the tracer filaments, dur-
ing which a strong enhancement of the tracer gradients takes place in the basin, and
eventually of a spreading phase of the cluster of particles all over the basin. As un-
derlined by Pierrehumbert (1991), an efficient way to characterize the different stages
of mixing is to introduce the particle pair correlation function H(r), defined as the
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Fig. 6 - Isolines af tagged particles at the initial time, when they are evenly distributed over the
basin, and at 1, 2 and 3 cycles for a second-mode basic flow with 〈|u|〉=0.05.

Fig. 7 - Poincaré maps giving the evolved position of 1000 particles initially distributed as in
Figure 3. The basic flow is a mixed first-second mode with 〈|u|〉=0.01 (upper time sequence),
0.05 (intermediate), 0.1 (lower).

number of particle pairs whose distance, at given times -which we choose to be multi-
ples of the forcing period- is less than r. Typically, for a chaotic systemH(r) exhibits
self-similar subranges in which H(r) ∝ rα, where α is the correlation dimension
(Grassberger and Procaccia, 1983), corresponding to a very compact particle cluster
when α = 0, to a tracer filament when α = 1 and, finally, to a widespread particle
cloud when α = 2. The computation of H in our case confirms that we are looking at a
chaotic system. The upper panel of Figure 9 represents the Poincaré maps of a numer-
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Fig. 8 - Poincaré maps giving the evolved position of 1000 particles initially distributed as in
Figure 3. The basic flow is a mixed oscillating boundary layer-first mode with 〈|u|〉=0.01 (upper
time sequence); 0.05 (intermediate); 0.1 (lower).

ical experiment in which a compact cluster of 100 particles is released in a first-mode
basic flow with 〈|u|〉 = 0.1 (corresponding to the high amplitude case of Figure 3).
The evolution of the particle spreading is mirrored by the evolution of the slope of
H(r) shown in the lower panel: at the initial time all particles are clustered together,
which corresponds to the horizontal line (α=0). As time goes by (note that H(r) is
plotted every 2 cycles) its slope grows, passing through the filament stage represented
by slopes around α=1 and eventually reaching, after about 15 cycles, the α=2 regime,
i.e. that of an area-filling tracer particle cloud. For a smaller amplitude (〈|u|〉 = 0.05,
Figure 10, corresponding to the intermediate case of Figure 3) 20 cycles are not suffi-
cient for H to reach the final regime.

A classical tool used to analyze the effect of chaotic advection is the Maximum Lya-
punov Exponent (Lichtenberg and Lieberman, 1982), which represents an estimate of
the e-folding time scale of particle pair trajectory divergence:

λ = lim
t→∞ lim

δ(0)→0

1
t

ln
δ (t)
δ (0)

where δ(t) is the distance between trajectories at time t. Recently, the FSLE (Finite
Scale Lyapunov Exponent) has been introduced (Aurell et al., 1997; Artale et al.,
1997; see also Boffetta et al., 2000), particularly suitable to study non-asymptotic
dispersion processes, thus very appropriate for the study of tracer transport in closed
basins, in which the structure of the advecting flow is conditioned by the presence of
boundaries (Artale et al., 1997; Lacorata et al., 2001).
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Fig. 9 - Upper panel: Poincaré maps of a numerical experiment in which a compact cluster of
100 particles is released in a first-mode basic flow with 〈|u|〉=0.1 The evolution of the particle
spreading is mirrored by the slope of the particle pair correlation function H(r)(lower panel)
reported at every 2 cycles.

The FSLE is defined on the basis of the ensemble average of the “doubling time” τ ,
i.e. of the time it takes for the separation between particle pairs, initially set at a given
value δ, to grow to r · δ, with r > 1 (typically r = 2, whence the definition of τ as
doubling time)

λ (δ) =
ln r

〈τr (δ)〉
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Fig. 10 - Upper panel: Poincaré maps of a numerical experiment in which a compact cluster of
100 particles is released in a first-mode basic flow with 〈|u|〉=0.05 The evolution of the particle
spreading is mirrored by the slope of the particle pair correlation function H(r) (lower panel)
reported at every 2 cycles.

The FSLE has several interesting properties (Boffetta et al., 2000; Lacorata et al.,
2001): in particular, in the case of standard diffusion λ(δ) ∼ δ −2 , and the diffusivity
can be estimated as K∼ λ(δ) δ2. A weaker dependence of λ on δ indicates superdiffu-
sive behaviour induced by long time correlations in the advective flow; and a constant
value of λ over a broad range of scales indicates exponential trajectory separation.

In figure 11a we show the FSLE for the first mode flow and for three different am-
plitudes: for the highest amplitude ( 〈|u|〉 = 0.1 ), λ(δ) is constant over a very broad
range of scales, up to O (10 km); for smaller amplitudes, besides attaining lower val-
ues, λ(δ) shows a constant behaviour on a smaller range of scales - up to O (1 km) -
even though λ(δ) is fairly constant also between the scales 1 to 10 km.
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Fig. 11 - Finite Scale Lyapunov Exponent λ(δ) vs δ for: (a) the first Rossby normal mode and
for three different amplitudes: 〈|u|〉 =0.1 (solid line), 〈|u|〉 = 0.05 (dashed line), 〈|u|〉 = 0.01
(dotted line); (b) the second Rossby normal mode and for three different amplitudes: 〈|u|〉 =
1.0 (solid line), 〈|u|〉 = 0.5 (dashed line), 〈|u|〉 = 0.1 (dotted line). λ is expressed in days−1

and δ in km.

This implies the presence of a pervasive mechanism of chaotic advection, with an
induced effective diffusivity which may reach values of the order of a few 10 6 cm2/s
for 〈|u|〉 = 0.1 for the dimensional case of the Strait of Sicily (see end of Sect. 4),
estimating K ∼ λ(δ) δ2 taking the highest value for δ in the plateau (≈7 km). Such
a value is indeed smaller than those suggested by Okubo (1971) for the diffusivity
induced by turbulent diffusion in the upper ocean at scales similar to those of the
schematic basin investigated in this work, which is in the range of 10 7 cm2/s and
well agrees with estimates from drifter data in the world ocean (see, e.g., Poulain and
Niiler, 1989; Poulain et al., 1996; Bauer et al., 1998; Falco et al., 2000). We obviously
expect this to be just one among several different dispersion mechanisms, and yet
the above figures show that such effect may well be of non negligible importance in
basins characterized by such circulation patterns. As can be deduced from the values
plotted in figure 11a, in the case of 〈|u|〉 = 0.05, K is one order of magnitude less
than the above.

The FSLE for the second mode is shown in figure 11b for three different amplitudes.
The two modes display different transport characteristics; in particular, the second
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mode shows a less widespread presence of exponential separation between trajecto-
ries, and clearly approaches a saturation regime which is hampered by the presence of
the boundaries. This agrees with the analysis of the Poincaré maps of figure 5, which
show a less pronounced stretching and folding and a more diffuse tracer distribution
over the basin.

VI. CONCLUSIONS

In this work a general discussion of relevant aspects of planetary and topographic,
barotropic and baroclinic Rossby waves and modes based on observational, modeling
and laboratory studies in a Eulerian framework is presented. A specific analytical so-
lution of the quasigeostrophic equation of conservation of potential vorticity in terms
of Rossby normal modes in a circle is then used to analyze Lagrangian transport prop-
erties of Rossby dynamics in a simplified framework.

A relatively simple approach to describe dispersion processes in two-dimensional
chaotic flows is that of kinematic models, where the large scale flow is prescribed a
priori by assigning a stream function, which may or may not be time-dependent. Even
in the latter case, however, the time dependence can be typically removed by a suit-
able change of coordinates, so that the necessary temporal variability yielding chaotic
advection is then to be added in the form of a smaller scale perturbation (see, e.g.,
Solomon and Gollub, 1988; Pierrehumbert, 1991; Samelson, 1992). The Lagrangian
study presented here differentiates itself from previous works in that our large scale
flow presents an intrinsic time dependence of modal character yielding chaotic ad-
vection, so that no necessity arises of introducing “synthetic” temporal variabilities.
In addition, and more importantly, we underline that the choice of the investigated
flow, representing Rossby normal modes in a closed basin, is motivated by its strong
oceanographic relevance, as discussed in section 3. Therefore, the knowledge of the
peculiar dispersion characteristics of Rossby normalmodes can be of great importance
for deriving diffusivity estimates from in situ data and/or in selecting parametrizations
for subgridscale processes to be utilized in numerical simulations.

As could be expected, the presence of Rossby modes inducing velocities with a mag-
nitude comparable to typical speeds observed in ocean subbasins yields indeed dis-
persion due to chaotic advection. This has been described by means of Poincaré maps
and quantified by computing the FSLE for different realizations of the flow, and by
constructing particle pair correlation functions. The extension of the present analysis
to the case in which the basic flow is produced by an oceanic circulation model rather
than provided by an analytical formula, as we have done here, is being carried out.
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