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Abstract

The physical modeling of topographic Rossby normal modes carried out at the “Coriolis”
Rotating Platform (Grenoble), is presented. The basic feature of the bottom topography is a lin-
ear slope of 4.3 m × 2 m delimited by two lateral walls. Since the studied motions are essentially
barotropic, homogeneous water was used. Unsheared currents were generated by a simple movement
of a wavemaker located in front of the topographic barrier. The conservation of potential vorticity for
the currents flowing onto the channel slope produced Rossby waves: reflections at the lateral bound-
aries then led to the formation of propagating barotropic Rossby normal modes, whose frequencies
and spatial structures were selected by the physical system. The currents were measured through
the correlation imaging velocimetry (CIV) method, which allowed an extremely detailed synoptic
map of the horizontal velocities in an area (∼13 m2) including the slope to be obtained every 30 s.

A variety of experiments were performed in order to provide a complete process study in which
the effect of different channel lengths and rotation periods could be tested. Two different lengths
of the linear slope, 4.3 and 3.3 m, and rotation periods ranging from 30 to 50 s were considered.
The qualitative analysis of the 2D current patterns, and the good agreement found between the
measured eigenperiods and the periods obtained by means of a simple analytical model, show
that in all cases the first Rossby normal mode was generated. Moreover, numerical simulations
based on the shallow-water equations, for a geometry and paddle movements that match closely
the experimental setup, allow to calibrate the analytical model and provide useful information on
a discrepancy found between experimental and analytical eigenperiods due to an oscillation of the
normal mode trajectory. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Rossby waves are ubiquitous dynamical features in the oceans. They are barotropic
or baroclinic rotational waves owing their existence to the restoring force provided by
the planetary or topographicβ-effect (e.g.Pedlosky, 1987). Planetary Rossby waves (i.e.
those related to the variation of the Coriolis parameter with latitude) account for an impor-
tant part of the wind-driven subinertial variability over spatial scales of O(100–1000 km).
Barotropic waves can have very small periods of O(10–100 days) while baroclinic waves
at mid-latitudes have a lower cutoff period of O(1 year). Multiple reflections at horizontal
boundaries can give rise to planetary Rossby normal modes (PRMs), with a discrete set of
eigenperiods dependent on the geometry of the basin. On the other hand topographic Rossby
waves (i.e. those supported by an equivalent topographicβ-effect) have much smaller space
and time scales, since they are confined over strong topographic slopes, typically with spa-
tial scales of O(100 km), and have periods that can be just above the inertial one. Also for
topographic Rossby waves multiple reflections due to both coasts and sharp topographic
variations can lead to the excitation of topographic Rossby normal modes (TRMs).

PRMs contribute to shape the high frequency barotropic variability of large oceans.
Willebrand et al. (1980)showed in a numerical study that in the north Atlantic the charac-
teristic time scale of dissipation is larger than the time necessary for a barotropic Rossby
wave to propagate westward across the basin for the 4–5 lowest basin modes, so that they
may be excited, with periods ranging from 10 to 15 days.Pierini (1990, 1997)showed that
in fact these modes can be in equilibrium with the wind without any substantial westward
intensification, while for higher forcing periods the forced response is in terms of westward
intensified Rossby modes (Pierini, 1998). In the Atlantic Ocean PRMs have never been
unambiguously observed while in the Pacific OceanLuther (1982)showed persuasive
evidence of a 4–6 days PRM with an energye-folding time of less than 3 days. The effect of
the mid-ocean ridge on the structure of PRMs was considered byBarnier (1984), Matano
(1995), Pedlosky and Spall (1999), andPedlosky (2000).

TRMs (e.g.Ripa, 1978) are fundamental elements in the theory of long-period tides (e.g.
Wunsch, 1967; Platzman et al., 1981; Carton, 1983; Miller et al., 1993), determining locally
the structure of the tidal response. However, only very recently experimental and numerical
evidence was provided suggesting that such dynamical features can play an important role
in coastal oceanography. While topographic Rossbywaves have been clearly identified in
various oceanic sites (e.g.Thompson, 1971; Thompson and Luyten, 1976; Okkonen, 1993),
in a study on the circulation over the ridge connecting Iceland to the Faeroe islands,Miller
et al. (1996)gave for the first time unambiguous experimental evidence of a TRM. Both
the experimental eigenperiod 1.8 days and the corresponding spatial structure of the mode
were satisfactorily explained by a shallow-water model.Pierini (1996)applied a barotropic
circulation model to the central Mediterranean Sea and showed that TRMs with periods
ranging from 2 to 5 days can be excited in the Strait of Sicily by both wind anomalies and
remote barotropic flows produced by pressure fluctuations on a basin scale. Theoretical
evidence that TRMs can be excited in the Mediterranean Sea is also provided byCandela
and Lozano (1994). In general, because of their small periods, the possible existence of
TRMs in several oceanographic sites might not be revealed in residual current signals
simply because the modes may be filtered out together with the tidal currents. It is therefore
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possible that topographic Rossby modes could be more ubiquitous than is usually believed,
also in view of their ability to be excited easily by different forcing agents (Pierini, 1996).
Assessing this hypothesis would be relevant as far the understanding of horizontal mixing
in regions of bounded topographic slopes is concerned, as it was pointed out (Pierini and
Zambianchi, 1995), that—due to their particular dynamical nature—TRMs can produce
chaotic advection of passive tracers.

As far as laboratory studies are concerned, simulations in rotating tanks to model topo-
graphic Rossby waves have been carried out (e.g.Sommeria et al., 1991), but the combined
process of Rossby wave generation, wave reflection at horizontal boundaries and consequent
excitation of normal modes has not received much attention. OnlyPedlosky and Greenspan
(1967)andBeardsley (1975)have conducted analytical, laboratory and numerical investi-
gations into the role of TRMs in the “sliced cylinder” model. Further physical modeling of
TRMs could shed light on their generating and propagating mechanisms and, at the same
time, it could be useful for validating numerical studies. Moreover, the physical modeling of
TRMs over a linear slope would of course be equivalent to modeling PRMs. The “Coriolis”
Rotating Platform in Grenoble was in this respect an ideal and unique experimental facility.
The physical modeling of TRMs was in fact carried out at “Coriolis” with the support of
the “Large-Scale Facilities Programme” of the European Commission. In this paper, we
present the results of these experimental investigation, along with a numerical validation
through the use of a mathematical model.

In Section 2the experimental setup, the generating mechanism used to produce TRMs,
and the measuring techniques (in particular the correlation imaging velocimetry, i.e. CIV)
that have allowed the flows to be monitored are described. InSection 3a basic experiment
is presented in detail. From this discussion the dynamical mechanism that leads to TRM
excitation is revealed. InSection 4sensitivity experiments are presented corresponding
to different rotation rates and channel lengths. In all cases the obtained TRM eigenperi-
ods are compared to an analytical formula and good agreement is found. Finally, inSection 5
numerical experiments performed by means of a shallow-water numerical model are
presented and their comparison with the experimental results is discussed.

2. The experimental setup and the measuring techniques

The experimental setup and the generating mechanism to be implemented in the “Coriolis”
rotating tank was suggested by a numerical study concerning the Strait of Sicily.Pierini
(1996)showed that TRMs with periods ranging from 2 to 5 days can be excited over the
complex topographic pattern resembling a ridge between Tunisia and Sicily by two different
forcing agents that are essentially equivalent. First of all the wind can induce such motions
through the interaction with the local topography of remote currents associated with wind
stress anomalies, rather than (as suggested byMiller et al., 1996) through a local reso-
nant interaction with the atmospheric forcing. Secondly, similar current variations induced
remotely through open boundaries without any wind forcing produce the same results. In
other terms the relative vorticity required by the TRM, instead of being transferred locally
by a wind stress curl, is induced through the conservation of potential vorticity by a current
(even originally irrotational) flowing over the ridge. These considerations suggest a way
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of generating TRMs in the laboratory and, in turn, the actual excitation of these motions
would support the hypothesis that this can be an effective generating mechanism.

2.1. Experimental setup

In view of these considerations the topography ofFig. 1awas adopted. Two regions of
different depth (0.6 and 0.3 m) were connected by a linear slope of 4.3 m× 2 m delimited
by two walls necessary to provide the Rossby wave reflections required for the excitation
of the normal modes (in the analogy with the Strait of Sicily the outer boundary would
represent the western Sicilian coasts and the inner one the Tunisian coasts). The external
boundary was made movable in order to allow for different slope lengths. Since the studied
motions are essentially barotropic, homogeneous water was used. A topographic correction
that takes into account the surface curvature due to the centrifugal force was also introduced.

According to the aforementioned discussion on the Strait of Sicily TRM generation,
horizontally and vertically unsheared currents were generated by a large paddle that moved
toward the slope with a simple time dependence, an example of which is given inFig. 1b.
As we will see in the following sections, the conservation of potential vorticity for the
flow impinging over the channel slope produces topographic Rossby waves: reflections at
the lateral boundaries then lead to the formation of propagating barotropic Rossby normal
modes, whose frequencies and spatial structures are selected by the physical system. It
is worth noticing that during its motion the paddle generates a couple of strong vortical
motions just behind it. In this respect the motion “toward” the slope had the advantage that
the paddle (which at the end of its motion was very close to the edge of the slope) acted
as a shield that prevented such vortices from contaminating the signal to be studied. In the
various experiments the rotation rate ranged from 30 to 50 s and slope lengths of 4.3 and
3.3 m were considered.

2.2. Correlation imaging velocimetry

In the first set of experiments the flows were measured by means of a series of eight
sonic currentmeters located in four points along the central isobath of the slope. This made
it possible to identify the propagation of Rossby waves by observing the phase lag between
different points, and allowed for a rough evaluation of the eigenperiods. Unfortunately,
in this set of experiments the paddle was moved “away” from the slope (unlike in the
experiments presented in this paper), so that the shielding effect of the paddle was absent
(seeSection 2.1), and the vortices produced by the paddle motion introduced a relatively
large noise in the time series.

For a subsequent set of experiments the currentmeters were removed and the CIV tech-
nique was implemented in the 13 m2 region delimited by the rectangle “B” that includes the
slope inFig. 1a(that is by far the largest area ever used for a measuring technique of this
kind) in order to monitor synoptically the induced flows. CIV is a highly accurate imaging
velocimetry technique that relies on the cross-correlation of local areas of image texture
between two images taken a short time apart�tCIV (details of the algorithms and optimiza-
tion procedures can be found inFincham and Spedding, 1997). Such techniques do not
rely on the use of particle images, and in principle, any passive tracer that provides image
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Fig. 1. (a) The experimental setup showing a plan view of depths in the circular tank, the working region is the
rectangle denoted “B” at the top; (b) example of time dependence of the paddle velocity.
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texture and follows the flow may be used. Measurements over large areas in homogeneous
fluids require large neutrally buoyant tracers. Small drops of fluorescence dye dissolved
in common salt solution were sprinkled over the measurement surface before each experi-
ment. These slightly heavier drops of dye descend through the fluid depth forming a dyed
turbulent wake that quickly dissipates leaving behind a fossilized column of dye of neutral
buoyancy. When illuminated by a horizontal sheet of laser light, highly textured images are
produced. CIV divides each image into smaller pattern boxes containing sufficient image
texture, these boxes are then correlated with the same region in the second image and the
peak of the spatial correlation function determines the displacement of the tracer pattern.
The raw velocity data from each image pair is subjected to both automatic and manual veri-
fications before being re-interpolated onto a regular grid. This re-interpolation is done using
a thin shell smoothing spline (Spedding and Rignot, 1993). The divergence of the velocity
field and the vorticity can also be computed after this smoothing. In this respect a byproduct
of the interpolation process is that the spatial derivatives can be computed directly from the
spline coefficients and, in order to suppress grid-scale fluctuations a 4th order butterworth
spectral filter is applied before computation of the spatial derivatives.

In our case the sheet of laser light was produced at a depth of 15 cm, the image resolution
was 768 pixels× 484 pixels,�tCIV ranged from 3 to 10 s and a sample every 30 s was
obtained, so that the evolution of the flow in all its stages could be followed in real time.

3. A basic experiment

A variety of experiments were performed in order to provide a complete process study
in which the effect of different channel lengths and rotation periods could be tested. In
this section, we present and discuss an experiment (exp. A) that puts in evidence all the
main aspects of the dynamics (the other experiments will be presented in the next section).
In exp. A (Table 1), the rotation period was taken asTrot = 45 s, the largest slope length
(Lx = 4.3 m) was used and the speed of the paddle is the one shown inFig. 1b(at t = 0 the
fluid was virtually in solid body rotation, with a very small superimposed residual motion).
The paddle approached the limit of the slope covering a length of 0.3 m, and the final position
was 44 mm away from it. The choice of such a simple paddle movement ensures that any
oscillations arising over the slope are due to dynamical mechanisms intrinsic of the system
and do not depend on the details of the forcing mechanism. This generating mechanism can

Table 1
List of the experiments referred to in the text identified by their rotation period and slope lengtha

Experiment Trot (s) Lx (m) Tsp (min) T0 (min) Tnum (min)

A 45 4.3 ∼2.5 2.70 ∼2.7
B 35 4.3 ∼2 2.10 –
C 50 4.3 ∼3 3.00 –
D 35 3.3 ∼2.5 2.35 –
E 45 3.3 ∼2.8 3.03 ∼3

a Tsp are the experimental eigenperiods,T0 the eigenperiods obtained byEq. (1), andTnum are the eigenperiods
obtained by solving numerically model (2).
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therefore be thought of as the simplest possible one that introduces a perturbation in a fluid
in solid body rotation in the presence of a topographic ridge.

Fig. 2 shows eight snapshots of velocities measured with CIV taken every 30 s starting
from t = 0.5 min (Fig. 2a) in the domain represented by the rectangle “B” inFig. 1a(the
orientation of thex- andy-axis is indicated by the arrows of rectangle B, in particular the
lower boundary corresponds to the one facing the paddle). The images a, b and c show flows
during the forced phase. They exhibit the response over the topographicβ-plane (given by
the slope) to an irrotational current impinging orthogonally to the isobaths (the irrotational
character of the flow is lost over the slope and even in its vicinity, as shown near the lower
boundary, because of the interaction with the sloping bottom). Negative relative vorticity is
induced through the conservation of potential vorticity as soon as the water columns put in
motion by the paddle reach the bottom slope. InFig. 2athis is evidenced by the formation
of an anticyclonic gyre extending over the whole slope. In the flow patterns 2b and c this
feature is accompanied by the “westward” (leftward) propagation of topographic Rossby
waves. InFig. 2c(corresponding to the instant at which the paddle stops) the anticyclonic
gyre has squeezed near the left boundary and a cyclonic gyre has taken its place in the
middle of the slope.

From now on (Fig. 2d–handFig. 3) the evolution is free, and the typical structure of the
first Rossby normal mode is evident (two main gyres of opposite sign propagating along
lines of constant planetary vorticity).Pedlosky (1987, Section 3.25) shows how this can be
achieved by means of the superposition of four appropriate plane waves produced by lateral
reflections in a closed rectangular domain. In our case, although the slope is unbounded in
the direction normal to the isobaths, the lines of topographic gradient discontinuity along
which the slope is connected with the regions of flat bottom act as “equivalent” coasts as
far as the Rossby wave reflections are concerned. The further evolution (Fig. 3) evidences
a dissipation of energy due basically to bottom friction and also to the eddy viscosity
associated with the production of small eddies near the lateral boundaries that subtract
energy from the coherent Rossby normal mode. Moreover, an oscillation in the “trajectory”
of the normal mode can be noticed starting from 2.5 min (Fig. 2e). Possible implications
related to this behavior will be discussed inSection 5.

In Fig. 4 the time series of they-component of the velocities,−v in points P1, P2, and
P3 of Fig. 1 are reported. They are computed from the CIV currents ofFigs. 2 and 3by
averaging over circles of 25 cm radius. The phase lag between the three points is due to the
leftward propagation, and in each point an oscillation with a period ofTA ≈ 2.5± 0.1 min
can be computed empirically from the graph ofFig. 4. Such period is by no means related
to the time history of the paddle movement (different movements of the paddle produced
the same period), but it is rather selected by the dynamical system and can therefore be
considered as the eigenperiod of the first Rossby normal mode excited by the interaction of
the current produced by the paddle with the geometry and topography of the ridge.

It is useful to consider the simple analytical model for the first Rossby normal mode in
a closed rectangularβ-plane as a reference for a quantitative interpretation of the obtained
TA. The lowest eigenperiod is given by (Pedlosky, 1987):

T0 = TrotπLx

D0

D − D1

√
1

L2
x

+ 1

(δLy)2
, D0 = D + D1

2
(1)
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Fig. 2. Velocities measured by the CIV for exp. A. Parts a–h correspond tot = 0.5, 1, . . . , 4 min. Axis units are
in cm, with orientation as shown inFig. 1a(the paddle is situated below the long (x) axis).
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Fig. 3. Velocities measured by the CIV for exp. A. Parts a–h correspond tot = 4.5, 5, . . . , 8 min. Axis units are
in cm.
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Fig. 4. Cross-isobath CIV velocities averaged over circles of 25 cm radius centered in points P1 (thick solid line),
P2 (solid line), and P3 (dashed line) for exp. A.

where the planetaryβ-effect is substituted by the equivalent topographicβ-effect of the
bottom slope (D = 0.6 m is the depth of the deep region,D1 = 0.3 m that of the shallow
region, andD0 a mean water depth at the slope),Lx andLy are the two linear dimensions
of the sloping channel (Lx = 4.3 m, Ly = 2 m) andδ is a non-dimensional parameter
introduced in order to take into account departures from the closed rectangularβ-plane
model. With these values andδ = 1 one getsT0A = 3.9 min.

A better agreement withTA ≈ 2.5 min can be obtained if a correctionδ > 1 to Ly is
introduced in order to empirically take into account the fact that, due to the lack of rigid
boundaries alongy, the motions extend all over the 3 m× 4.3 m rectangle covered by the
CIV apparatus, as it is evident fromFigs. 2 and 3. The parameterδ should therefore have
a valueδ ≈ 1.5, for an effectiveLy ≈ 3 m. We will see inSection 5that a numerical
shallow-water model simulates well the observed motion of experiment A, apart from a
residual motion present only in the laboratory experiments. As a consequence, the value
TnumA ≈ 2.7 min (seeSection 5) produced by the numerical simulation is expected to be
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described byEq. (1)even more accurately then it is for the experimental eigenperiodTA,
thereforeδ can be chosen so as to giveT0A = TnumA. As a consequence, we will choose
here, and for all the experiments described in the next section, the valueδ = 1.65 (for an
effectiveLy = 3.3 m) which givesT0A = TnumA = 2.7 min (seeTable 1).

It should be noticed thatT0A overestimatesTA by ∼8%. One should consider that the
analytical model (1) does not represent accurately the experimental setup, as other dif-
ferences cannot be empirically taken into account, such as the non-constant value of the
topographicβ-effect over the 3 m×4.3 m rectangle (since it is constant over the 2 m×4.3 m
slope region but is zero outside), or the absence of rigid boundaries alongx. Moreover, in
Section 5we will analyze a further reason that can account for part of the discrepancy
between experimental and analytical eigenperiods. Nonetheless, the comparison of the
experimental eigenperiod with the period given byEq. (1) provides a good quantitative
validation (in addition to the qualitative validation given above) of the hypothesis that the
induced oscillations are associated with the first TRM.

4. Sensitivity experiments

In this section we discuss experiments that differ from exp. A both as far as the rotation
periodTrot and the slope lengthLx are concerned. Experiments B and C (seeTable 1and
Fig. 5) differ from exp. A in that the rotation period is now 35 and 50 s, respectively, the
time dependence of the paddle movement being still given byFig. 1b. While att = 1 min,
i.e. still during the forced phase, the response is very similar for both experiments, the
free evolution shows a clear difference in the normal mode eigenperiod. InFig. 6 the time
series of−v in point P2 for experiments B, A and C (corresponding to rotation periods
of 35, 45, and 50 s, respectively) are reported. We have already discussed the agreement
between the experimental eigenperiod and the analytical estimate provided byEq. (1)for
exp. A in the preceding section. For exps. B and C with the same values used for A but
with the appropriateTrot one gets fromEq. (1): T0B = 2.10 min andT0C = 3 min, in very
good agreement with the experimental eigenperiods deducible from the graph ofFig. 6:
TB ≈ 2 min andTC ≈ 3 min.

In the next two experiments, D and E (seeTable 1), the length of the slopeLx was
reduced from 4.3 to 3.3 m by moving the outer boundary 1 m toward the center of the tank
(so that the boundary is now given by the thick solid line “A” ofFig. 1a). Fig. 7shows the
responses for exp. D (a–d) and exp. E (a′–d′), which are qualitatively similar to those of
the previous experiments, but now for the sameTrot one has larger eigenperiods, as implied
by Eq. (1) (exps. B and A correspond to exps. D and E, respectively, the only difference
being the lengthLx). The theoretical eigenperiods given byEq. (1)are:T0D = 2.35 min
andT0E = 3.03 min. These values are once more in good agreement with the experimental
ones deducible from the graph ofFig. 8, where−v in P2 is plotted as a function of time
for the two experiments:TD ≈ 2.5 min andTE ≈ 2.8 min. The comparison between the
time series in P2 for the experiments that were performed with the sameTrot but with
different slope lengths (exps. A and E) are reported inFig. 9, in which therefore the effect
of varying Lx is put in evidence. In conclusion, the agreement between the eigenperiods
computed by formula (1) for all the experiments performed (differing byTrot andLx) and the
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Fig. 5. Velocities measured by the CIV for exp. B (a, b, c, and d:t = 1, 2, 3, 4 min) and for exp. C (a′, b′, c′, and
d′: t = 1, 2, 3, 4 min). Axis units are in cm.
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Fig. 6. Cross-isobath CIV velocities averaged over a circle of 25 cm radius centered in point P2 for experiments
B (thick solid line), A (solid line), and C (dashed line), corresponding toTrot = 35, 45, 50 s, respectively.

observed periods of the oscillations indicate that we are actually observing the generation
and subsequent evolution of the first topographic Rossby normal mode.

5. Mathematical modeling of the observed flows

Along with the laboratory experiments, the mathematical modeling of the studied motions
was carried out. It was based on the non-linear shallow-water equations for a homogeneous
incompressible fluid (e.g.Pedlosky, 1987):

ut + (u · ∇)u + f k × u = −g∇η + τb

ρH
+ AH ∇2u, ηt + ∇(Hu) = 0 (2)

whereu is the horizontal velocity,η(x,y, t) the sea surface displacement,f the Coriolis param-
eter,k = (0, 0, 1), g the acceleration of gravity,ρ the water density,H = D + η(x, y, t) −
d(x, y) whereD is the maximum water depth andd(x, y) the bottom relief,τb = ρCDb|u|u
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Fig. 7. Velocities measured by the CIV for exp. D (a, b, c, and d:t = 1, 2, 3, 4 min) and for exp. E (a′, b′, c′, and
d′: t = 1, 2, 3, 4 min). Axis units are in cm.
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Fig. 8. Cross-isobath CIV velocities averaged over a circle of 25 cm radius centered in point P2 for experiments
D (thick solid line) and E (solid line), corresponding toTrot = 35, 45 s, respectively.

the bottom stress andAH the lateral eddy viscosity coefficient. A finite difference scheme on
the Arakawa C-grid was used to solve the mathematical model numerically (Pierini, 1996) in
a geometric environment that resembles closely the experimental setup. The paddle motion
is simulated by imposing a velocity normal to the paddle profile, with the same time depen-
dence as the one of the real paddle (Fig. 1b). The grid spacing is�x = �y = 20 cm, the time
step�t = 0.01 s and the dissipating parameters areAH = 0.001 m2/s andCDb = 0.002.

In Figs. 10 and 11experimental and numerical results for experiments A and E (differing
only in the slope length) are compared in a window given by the rectangle “B” ofFig. 1a.
The two fields are in excellent agreement (especially during the forced phase), and all the
main dynamical features are well reproduced by the numerical model. However, two notable
differences are evident. First of all the decrease of current amplitudes is more pronounced
in the numerical signal than in the experimental one. This is due to the relatively large
value of the horizontal eddy viscosity necessary in the numerical model to damp unresolved
scales and strictly related to the spatial resolution. In the numerical model this effect is more
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Fig. 9. Cross-isobath CIV velocities averaged over a circle of 25 cm radius centered in point P2 for experiments A
(thick solid line) and E (solid line), corresponding toTrot = 45 s for the long and reduced slope length, respectively.

important than the bottom friction, while the latter appears to be the predominant dissipative
mechanism in the experiments, apart from regions close to the lateral boundaries. Naturally,
a higher resolution model could produce a slower energy decay, in better agreement with
the experiments. The second difference concerns the eigenperiods. The “numerical” ones,
as computed from the graphs ofFig. 12, areTnumA ≈ 2.7 min, TnumE ≈ 3 min. They
match the analytical eigenperiodsT0A andT0E given byEq. (1) because the value ofδ
was tuned (Section 3) just for this purpose (but it should be stressed that the resulting
value δ = 1.65 corresponds well to the observed spatial distribution of energy, as dis-
cussed inSection 3). However, these values are larger than the experimental eigenperiods
by ∼8%.

How can this small discrepancy be explained? An oscillation in the trajectory of the
normal mode is evident inFigs. 10c and 11cand, even more clearly, inFigs. 2, 3, 5 and 7.
The consequence is an increase of the length of the ray path, and therefore a decrease of
the experimental eigenperiod with respect to the normal mode produced by the numerical
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Fig. 10. Exp. A (a, b, and c): velocities measured by the CIV and interpolated onto a regular 20 cm× 20 cm grid
at timest = 1, 2, 3 min, respectively; (a′, b′, and c′): velocities computed by the numerical model on a regular
20 cm× 20 cm grid at timest = 1, 2, 3 min, respectively. Axis units are in cm.

simulation, in which such an oscillation is absent (Figs. 10c′ and 11c′). This can account
for the small discrepancy noticed earlier. It can be conjectured that the oscillation is rela-
ted to some form of instability of the normal mode to small perturbations (for instance
associated with small asymmetries in the paddle motion) that are present in the real experi-
ment but not in the numerical model. The instabilities would be limited by the effect of the
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Fig. 11. Exp. E (a, b, and c): velocities measured by the CIV and interpolated onto a regular 20 cm× 20 cm grid
at timest = 1, 2, 3 min, respectively; (a′, b′, and c′) velocities computed by the numerical model on a regular
20 cm× 20 cm grid at timest = 1, 2, 3 min, respectively. Axis units are in cm.

topographic wave guide, in so maintaining the basic structure of the topographic Rossby
normal mode. It is worth stressing that the use of the numerical model: (i) has allowed to tune
the parameterδ in the analytical model (1), (ii) has contributed to identifying the dynamical
nature of the observed motions, and (iii) has also allowed to isolate the trajectory oscilla-
tion from the overall normal mode structure and to estimate qualitatively its effect on the
eigenperiod.
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Fig. 12. (a) Exp. A; (b) exp. E. Thick lines: cross-isobath CIV velocities averaged over a circle of 25 cm radius
centered in point P2; thin lines: cross-isobath velocities in point P2 computed numerically by means of model (2).



224 S. Pierini et al. / Dynamics of Atmospheres and Oceans 35 (2002) 205–225

6. Conclusions

Topographic Rossby normal modes were successfully modeled in the “Coriolis” Rotating
Platform. A numerical study on the excitation of these rotational oscillations in the Strait of
Sicily (Pierini, 1996) suggested that they can be generated by the interaction of a large-scale
current with the topography of a laterally bounded topographic slope. This in turn suggested
that these modes could be excited in a rotating tank by means of an unsheared current
produced by a simple motion of a paddle located in front of a bounded slope. The experiments
have confirmed this conjecture. A variety of experiments were performed in order to provide
a complete process study in which the effect of different channel lengths and rotation periods
could be tested. The interpretation of the motions thus obtained in terms of first topographic
Rossby normal modes was supported by both a qualitative analysis of the 2D current patterns
of the currents measured by the CIV method, and by a quantitative analysis of the obtained
eigenperiods by means of a simple analytical formula.

This experiment has contributed to clarify a scientific issue, and to evidence the impor-
tance of the use of the CIV measuring technique and of a numerical circulation model. As
far as the scientific issue is concerned, the experiment has shown that a very effective gen-
erating mechanism of TRMs is the one given by the interaction of a large-scale current with
a topographic slope in the presence of lateral boundaries, the characteristics of the current
being not relevant in the process. This implies that rotational time-dependent motions of this
kind could be ubiquitous dynamical features in sites of the world oceans that have similar
geometrical characteristics and where, therefore, TRMs could contribute to the horizontal
mixing through the mechanism of chaotic advection. As far as the CIV measuring technique
is concerned, its application to the present experiment has allowed the verification of its
ability to give extremely detailed and reliable synoptic information on the velocity field
over an area which is by far the largest one ever used for a measuring technique of this kind.
Moreover, the availability of frequent 2D velocity fields has proved invaluable for the iden-
tification of motions, such as TRMs, which have very specific spatial and temporal features.
Finally, the use of a numerical circulation model implemented in a geometric environment
that resembles closely the experimental setup has allowed to calibrate the analytical model,
has contributed to identifying the dynamical nature of the observed motions, and has also
allowed the isolation of an unexpected modulation observed in the trajectory of the normal
mode from its overall structure, that deserves to be investigated in future studies.
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